cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A213793 Number of n X n 0..1 symmetric arrays with every row summing to floor(n/2).

Original entry on oeis.org

1, 1, 2, 4, 18, 112, 1760, 35150, 1944530, 133948836, 26615510712, 6549149852112, 4762109992158288, 4274712091685443584, 11528251571501588791296, 38295413179145036856212700, 386860001875783390762182911250, 4805622573099374975572752075805000
Offset: 0

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Examples

			Some solutions for n=4
..1..1..0..0....0..0..1..1....0..1..1..0....1..0..1..0....0..1..1..0
..1..0..1..0....0..0..1..1....1..0..0..1....0..0..1..1....1..1..0..0
..0..1..0..1....1..1..0..0....1..0..0..1....1..1..0..0....1..0..0..1
..0..0..1..1....1..1..0..0....0..1..1..0....0..1..0..1....0..0..1..1
		

Crossrefs

Column 1 of A213800.
Cf. A333164.

Formula

a(2*n) = A333164(n). - Andrew Howroyd, Apr 08 2020

Extensions

a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, Apr 08 2020

A213801 Number of 3 X 3 0..n symmetric arrays with all rows summing to floor(n*3/2).

Original entry on oeis.org

4, 13, 29, 57, 96, 153, 226, 323, 440, 587, 759, 967, 1204, 1483, 1796, 2157, 2556, 3009, 3505, 4061, 4664, 5333, 6054, 6847, 7696, 8623, 9611, 10683, 11820, 13047, 14344, 15737, 17204, 18773, 20421, 22177, 24016, 25969, 28010, 30171, 32424, 34803, 37279
Offset: 1

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Comments

Row 3 of A213800.
Sequence is difference between numbers of triangles, regardless of size, in A064412 (a family of ((3*n^2+3*n+2)/2)-iamonds, see also illustration of initial terms there) and a quantity A077043 of triangles of dimension 1. - Luce ETIENNE, Aug 23 2014

Examples

			Some solutions for n=4:
..1..3..2....2..4..0....0..4..2....1..2..3....1..1..4....4..0..2....2..2..2
..3..1..2....4..0..2....4..0..2....2..2..2....1..3..2....0..2..4....2..2..2
..2..2..2....0..2..4....2..2..2....3..2..1....4..2..0....2..4..0....2..2..2
a(2)=5-1=4, a(3)=14-1=13, a(210)=4118206-8269=4109937. - _Luce ETIENNE_, Aug 23 2014
		

Crossrefs

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -a(n-8).
Empirical: G.f. -x*(-4-5*x-3*x^2-7*x^3-x^5-2*x^6+x^7) / ( (x^2+1)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Jul 04 2012
a(n) = (14*n^3+42*n^2+53*n+25+3*(n+1)*(-1)^n+2*((-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+5-(-1)^n)/4)))/32. - Luce ETIENNE, Aug 23 2014
a(n) = A064412(n+1) - A077043((2*n+1-(-1)^n)/4). - Luce ETIENNE, Aug 23 2014

A213802 Number of 4X4 0..n symmetric arrays with all rows summing to 2*n.

Original entry on oeis.org

18, 169, 880, 3249, 9522, 23753, 52544, 106009, 198770, 351233, 590832, 953625, 1485778, 2245489, 3304704, 4751377, 6691410, 9251257, 12580080, 16852705, 22271986, 29072121, 37521216, 47924969, 60629426, 76025041, 94549616
Offset: 1

Views

Author

R. H. Hardin Jun 20 2012

Keywords

Comments

Row 4 of A213800

Examples

			Some solutions for n=4
..2..3..2..1....3..1..1..3....0..1..3..4....2..4..0..2....1..3..1..3
..3..2..0..3....1..4..1..2....1..0..4..3....4..2..2..0....3..4..0..1
..2..0..3..3....1..1..3..3....3..4..1..0....0..2..3..3....1..0..3..4
..1..3..3..1....3..2..3..0....4..3..0..1....2..0..3..3....3..1..4..0
		

Formula

Empirical: a(n) = 4*a(n-1) -3*a(n-2) -8*a(n-3) +14*a(n-4) -14*a(n-6) +8*a(n-7) +3*a(n-8) -4*a(n-9) +a(n-10).
Empirical: G.f. -x*(18+97*x+258*x^2+380*x^3+266*x^4+86*x^5+22*x^6+4*x^7-4*x^8+x^9) / ( (1+x)^3*(x-1)^7 ). - R. J. Mathar, Jul 04 2012

A213803 Number of 5 X 5 0..n symmetric arrays with all rows summing to floor(n*5/2).

Original entry on oeis.org

112, 5673, 87932, 815263, 4843626, 22698959, 84662388, 275879169, 782758404, 2036181209, 4827542558, 10773876919, 22498928491, 44939366943, 85390966217, 156814686053, 276999175867, 476278194021, 793826178700, 1294496520831
Offset: 1

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Comments

Row 5 of A213800.

Examples

			Some solutions for n=4
..0..0..2..4..4....1..4..0..4..1....1..1..0..4..4....0..3..4..0..3
..0..0..4..2..4....4..4..0..1..1....1..3..1..1..4....3..2..2..1..2
..2..4..1..2..1....0..0..3..3..4....0..1..3..4..2....4..2..2..1..1
..4..2..2..1..1....4..1..3..1..1....4..1..4..1..0....0..1..1..4..4
..4..4..1..1..0....1..1..4..1..3....4..4..2..0..0....3..2..1..4..0
		

Crossrefs

Cf. A213800.

A213792 Number of n X n 0..n symmetric arrays with every row summing to floor(n^2/2).

Original entry on oeis.org

1, 1, 3, 29, 3249, 4843626, 138198204339, 87098380004205128, 1525223999399549983474977
Offset: 0

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Examples

			Some solutions for n=4
..4..4..0..0....3..2..1..2....4..2..0..2....1..3..1..3....2..1..3..2
..4..4..0..0....2..1..2..3....2..0..4..2....3..4..0..1....1..4..0..3
..0..0..4..4....1..2..3..2....0..4..1..3....1..0..3..4....3..0..2..3
..0..0..4..4....2..3..2..1....2..2..3..1....3..1..4..0....2..3..3..0
		

Crossrefs

Diagonal of A213800.

Extensions

a(0)=1 prepended and a(7)-a(8) from Andrew Howroyd, Apr 07 2020

A213794 Number of n X n 0..2 symmetric arrays with every row summing to n.

Original entry on oeis.org

1, 1, 3, 13, 169, 5673, 526443, 133721189, 95133854529, 190409704025737, 1081810465812816481, 17533275809917986947451, 814583187343481957681992873, 108889213625061640897043875544377, 42017261328544343771207789776696995237, 46930798910194830781686389018692804741926963
Offset: 0

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Examples

			Some solutions for n=4
..0..2..2..0....2..2..0..0....2..1..0..1....1..1..0..2....1..2..0..1
..2..0..0..2....2..1..1..0....1..1..2..0....1..2..1..0....2..1..0..1
..2..0..1..1....0..1..1..2....0..2..1..1....0..1..1..2....0..0..2..2
..0..2..1..1....0..0..2..2....1..0..1..2....2..0..2..0....1..1..2..0
		

Crossrefs

Column 2 of A213800.

Extensions

a(0)=1 prepended and terms a(10) and beyond from Andrew Howroyd, Apr 07 2020

A213795 Number of n X n 0..3 symmetric arrays with every row summing to floor(n*3/2).

Original entry on oeis.org

1, 1, 4, 29, 880, 87932, 34725760, 46259653191, 250599609089536, 4664255347861848000, 359514810915617810737152, 96221422835240936091862618254, 107926925135028470351157750883132800, 423270762332675097186733226425581010359872
Offset: 0

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Examples

			Some solutions for n=4
..0..1..2..3....0..1..2..3....3..1..0..2....2..1..1..2....1..3..0..2
..1..0..2..3....1..2..1..2....1..1..2..2....1..2..1..2....3..1..1..1
..2..2..2..0....2..1..2..1....0..2..2..2....1..1..2..2....0..1..2..3
..3..3..0..0....3..2..1..0....2..2..2..0....2..2..2..0....2..1..3..0
		

Crossrefs

Column 3 of A213800.

Extensions

a(0)=1 prepended and terms a(9) and beyond from Andrew Howroyd, Apr 07 2020

A213796 Number of n X n 0..4 symmetric arrays with every row summing to 2*n.

Original entry on oeis.org

1, 1, 5, 57, 3249, 815263, 932587453, 4893373431575, 119570350092328225, 13715276642286471266345, 7439775168632414842497242951, 19190656372074846793620422063221831, 236483103820478991417179706813598595965425
Offset: 0

Views

Author

R. H. Hardin, Jun 20 2012

Keywords

Examples

			Some solutions for n=4
..3..1..1..3....1..3..4..0....4..0..4..0....2..4..0..2....0..1..4..3
..1..4..1..2....3..3..1..1....0..1..3..4....4..2..2..0....1..3..1..3
..1..1..3..3....4..1..0..3....4..3..0..1....0..2..3..3....4..1..2..1
..3..2..3..0....0..1..3..4....0..4..1..3....2..0..3..3....3..3..1..1
		

Crossrefs

Column 4 of A213800.

Extensions

a(0)=1 prepended and a(8)-a(12) from Andrew Howroyd, Apr 07 2020

A213797 Number of n X n 0..5 symmetric arrays with every row summing to floor(n*5/2).

Original entry on oeis.org

1, 6, 96, 9522, 4843626, 13937940952, 212962858290086
Offset: 1

Views

Author

R. H. Hardin Jun 20 2012

Keywords

Comments

Column 5 of A213800

Examples

			Some solutions for n=4
..1..3..2..4....5..1..0..4....4..1..0..5....5..4..0..1....5..3..1..1
..3..3..1..3....1..5..4..0....1..1..5..3....4..4..0..2....3..3..4..0
..2..1..5..2....0..4..2..4....0..5..3..2....0..0..5..5....1..4..0..5
..4..3..2..1....4..0..4..2....5..3..2..0....1..2..5..2....1..0..5..4
		

A213798 Number of n X n 0..6 symmetric arrays with every row summing to 3*n.

Original entry on oeis.org

1, 7, 153, 23753, 22698959, 138198204339
Offset: 1

Views

Author

R. H. Hardin Jun 20 2012

Keywords

Comments

Column 6 of A213800

Examples

			Some solutions for n=4
..3..1..2..6....0..0..6..6....0..3..3..6....6..6..0..0....3..5..1..3
..1..5..2..4....0..5..1..6....3..4..4..1....6..2..3..1....5..6..0..1
..2..2..6..2....6..1..5..0....3..4..1..4....0..3..3..6....1..0..5..6
..6..4..2..0....6..6..0..0....6..1..4..1....0..1..6..5....3..1..6..2
		
Showing 1-10 of 13 results. Next