A316266
FDH numbers of strict integer partitions with prime parts and prime length.
Original entry on oeis.org
12, 21, 28, 33, 44, 57, 75, 76, 77, 84, 100, 123, 132, 133, 141, 164, 175, 183, 188, 209, 228, 231, 244, 249, 275, 287, 291, 300, 308, 329, 332, 363, 388, 399, 417, 427, 451, 453, 475, 484, 492, 507, 517, 525, 532, 556, 564, 581, 591, 604, 627, 671, 676, 679
Offset: 1
Sequence of strict integer partitions with prime parts and prime length, preceded by their FDH numbers, begins:
12: (3,2)
21: (5,2)
28: (5,3)
33: (7,2)
44: (7,3)
57: (11,2)
75: (13,2)
76: (11,3)
77: (7,5)
84: (5,3,2)
-
nn=1000;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And[PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]
A316267
FDH numbers of strict integer partitions of prime numbers with a prime number of prime parts.
Original entry on oeis.org
12, 21, 57, 123, 249, 417, 532, 699, 867, 1100, 1389, 1463, 1509, 1708, 2049, 2068, 2307, 2324, 2913, 3116, 3147, 3157, 3273, 3325, 3619, 3903, 4227, 4268, 4636, 4821, 5079, 5225, 5324, 5516, 5739, 6308, 6391, 6524, 6621, 6644, 7469, 8092, 8193, 8225, 8457
Offset: 1
Sequence of strict integer partitions of prime numbers with a prime number of prime parts, preceded by their FDH numbers, begins:
12: (3,2)
21: (5,2)
57: (11,2)
123: (17,2)
249: (29,2)
417: (41,2)
532: (11,5,3)
699: (59,2)
867: (71,2)
1100: (13,7,3)
1389: (101,2)
1463: (11,7,5)
1509: (107,2)
1708: (23,5,3)
-
nn=1000;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And[PrimeQ[Total[FDfactor[#]/.FDrules]],PrimeQ[Length[FDfactor[#]]],And@@PrimeQ/@(FDfactor[#]/.FDrules)]&]
A319829
FDH numbers of strict integer partitions of odd numbers.
Original entry on oeis.org
2, 4, 6, 7, 10, 11, 12, 16, 18, 19, 20, 21, 25, 26, 30, 31, 33, 34, 35, 36, 41, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 68, 71, 74, 75, 78, 79, 80, 83, 86, 88, 90, 91, 92, 93, 95, 97, 98, 99, 102, 103, 105, 108, 109, 116, 118, 119, 121, 123, 125
Offset: 1
The sequence of all strict integer partitions of odd numbers begins: (1), (3), (2,1), (5), (4,1), (7), (3,2), (9), (6,1), (11), (4,3), (5,2), (13), (8,1), (4,2,1), (15), (7,2), (10,1), (5,4), (6,3), (17), (12,1), (19), (9,2), (8,3), (21), (6,2,1), (7,4), (5,3,1), (11,2), (14,1), (4,3,2).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],OddQ[Total[FDfactor[#]/.FDrules]]&]
A316094
FDH numbers of strict integer partitions with odd parts.
Original entry on oeis.org
1, 2, 4, 7, 8, 11, 14, 16, 19, 22, 25, 28, 31, 32, 38, 41, 44, 47, 50, 53, 56, 61, 62, 64, 71, 76, 77, 79, 82, 83, 88, 94, 97, 100, 101, 103, 106, 107, 109, 112, 113, 121, 122, 124, 127, 128, 131, 133, 137, 139, 142, 149, 151, 152, 154, 157, 158, 163, 164, 166
Offset: 1
Sequence of all integer partitions with distinct odd parts begins (), (1), (3), (5), (3,1), (7), (5,1), (9), (11), (7,1), (13), (5,3), (15), (9,1), (11,1), (17), (7,3), (19), (13,1), (21), (5,3,1), (23), (15,1), (9,3), (25), (11,3), (7,5), (27), (17,1), (29), (7,3,1), (19,1), (31).
-
nn=100;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],OddQ[Times@@(FDfactor[#]/.FDrules)]&]
A316361
FDH numbers of strict integer partitions such that not every distinct subset has a different average.
Original entry on oeis.org
24, 56, 60, 110, 120, 135, 140, 168, 210, 216, 224, 264, 270, 273, 280, 308, 312, 315, 330, 342, 360, 378, 384, 408, 420, 440, 456, 459, 480, 504, 520, 540, 546, 550, 552, 576, 585, 594, 600, 616, 630, 660, 672, 693, 696, 702, 728, 744, 756, 759, 760, 770, 780
Offset: 1
210 is the FDH number of (5,4,2,1), and the subsets {1,5}, and {2,4} have the same average, so 210 belongs to the data.
Cf.
A050376,
A064547,
A108917,
A213925,
A275972,
A299755,
A299757,
A301899,
A301900,
A316271,
A316313,
A316362.
-
nn=1000;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],!UnsameQ@@Mean/@Union[Subsets[FDfactor[#]/.FDrules]]&]
A319825
LCM of the strict integer partition with FDH number n.
Original entry on oeis.org
0, 1, 2, 3, 4, 2, 5, 3, 6, 4, 7, 6, 8, 5, 4, 9, 10, 6, 11, 12, 10, 7, 12, 6, 13, 8, 6, 15, 14, 4, 15, 9, 14, 10, 20, 6, 16, 11, 8, 12, 17, 10, 18, 21, 12, 12, 19, 18, 20, 13, 10, 24, 21, 6, 28, 15, 22, 14, 22, 12, 23, 15, 30, 9, 8, 14, 24, 30, 12, 20, 25, 6, 26
Offset: 1
45 is the FDH number of (6,4), which has LCM 12, so a(45) = 12.
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
LCM@@@Table[Reverse[FDfactor[n]/.FDrules],{n,2,nn}]
A319828
FDH numbers of strict integer partitions of even numbers.
Original entry on oeis.org
1, 3, 5, 8, 9, 13, 14, 15, 17, 22, 23, 24, 27, 28, 29, 32, 37, 38, 39, 40, 42, 43, 44, 45, 49, 50, 51, 59, 62, 64, 65, 66, 67, 69, 70, 72, 73, 76, 77, 81, 82, 84, 85, 87, 89, 94, 96, 100, 101, 104, 106, 107, 110, 111, 112, 113, 114, 115, 117, 120, 122, 124
Offset: 1
The sequence of all strict integer partitions of even numbers begins: (), (2), (4), (3,1), (6), (8), (5,1), (4,2), (10), (7,1), (12), (3,2,1), (6,2), (5,3), (14), (9,1), (16).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],EvenQ[Total[FDfactor[#]/.FDrules]]&]
A316264
FDH numbers of strict integer partitions with odd length and all odd parts.
Original entry on oeis.org
2, 4, 7, 11, 16, 19, 25, 31, 41, 47, 53, 56, 61, 71, 79, 83, 88, 97, 101, 103, 107, 109, 113, 121, 127, 128, 131, 137, 139, 149, 151, 152, 154, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 200, 211, 223, 224, 227, 229, 233, 239, 241, 248, 251, 257
Offset: 1
Sequence of all strict odd integer partitions begins (1), (3), (5), (7), (9), (11), (13), (15), (17), (19), (21), (1,3,5), (23), (25), (27), (29), (1,3,7), (31).
-
nn=100;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],And[OddQ[Length[FDfactor[#]]],OddQ[Times@@(FDfactor[#]/.FDrules)]]&]
A316268
FDH numbers of connected strict integer partitions.
Original entry on oeis.org
2, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 36, 37, 39, 41, 43, 45, 47, 49, 51, 53, 59, 61, 64, 65, 67, 69, 71, 73, 79, 81, 83, 85, 87, 89, 92, 97, 101, 103, 107, 108, 109, 111, 113, 115, 117, 119, 121, 124, 127, 129, 131, 135, 137, 139, 144
Offset: 1
Sequence of connected strict integer partitions begins (1), (2), (3), (4), (5), (6), (7), (8), (4,2), (9), (10), (11), (12), (13), (6,2).
Cf.
A048143,
A050376,
A064547,
A213925,
A299755,
A299756,
A299757,
A304714,
A304716,
A305078,
A305079,
A305829,
A305831.
-
nn=100;
FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
FDrules=MapIndexed[(#1->#2[[1]])&,Array[FDfactor,nn,1,Union]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>1]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[nn],Length[csm[primeMS/@(FDfactor[#]/.FDrules)]]==1&]
A327905
FDH numbers of pairwise coprime sets.
Original entry on oeis.org
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
Offset: 1
The sequence of terms together with their corresponding coprime sets begins:
2: {1}
6: {1,2}
8: {1,3}
10: {1,4}
12: {2,3}
14: {1,5}
18: {1,6}
20: {3,4}
21: {2,5}
22: {1,7}
24: {1,2,3}
26: {1,8}
28: {3,5}
32: {1,9}
33: {2,7}
34: {1,10}
35: {4,5}
38: {1,11}
40: {1,3,4}
42: {1,2,5}
- Wolfram Language Documentation, CoprimeQ
Heinz numbers of pairwise coprime partitions are
A302696 (all),
A302797 (strict),
A302569 (with singletons), and
A302798 (strict with singletons).
FDH numbers of relatively prime sets are
A319827.
-
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
Comments