Original entry on oeis.org
19, 37, 223, 409, 53617, 23757289, 3111662089, 407556643177, 1372675688565303822697, 23548271681390871672120649, 1676892190264006259992141409, 64923481849284379431377700019
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A214827,
A242324,
A214827,
A214828,
A214829,
A242572,
A242576,
A243622,
A214829,
A244001,
A214831,
A244002.
-
a={1,9,9}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
A248700
Indices of primes in the Heptanacci numbers sequence A122189.
Original entry on oeis.org
8, 14, 22, 102495, 130447, 173590
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A122189.
-
a={0,0,0,0,0,0,1}; For[n=7, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[7]]=sum]
A248921
Primes in the pentanacci numbers sequence A000322.
Original entry on oeis.org
5, 17, 977, 28697, 56417, 1428864769, 2809074173, 21344178433, 626815657409, 18407729752001, 2317881588988297338942875602391948125494800020122167809, 136507010958920295813169620935932629930648432530102206331972221346174230852977164801
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920.
-
a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
Select[With[{c={1,1,1,1,1}},LinearRecurrence[c,c,300]],PrimeQ] (* Harvey P. Dale, Nov 30 2019 *)
A253706
Primes in the 8th-order Fibonacci numbers A079262.
Original entry on oeis.org
2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705.
-
a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
-
lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
A255529
Indices of primes in the 9th-order Fibonacci number sequence, A104144.
Original entry on oeis.org
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A104144.
-
a={0,0,0,0,0,0,0,0,1}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
-
a104144(n) = polcoeff(x^8/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8-x^9) + O(x^(n+1)), n);
lista(nn) = {for (n=1, nn, if (isprime(a104144(n)), print1(n, ", ")););} \\ Michel Marcus, Feb 27 2015
A255530
Indices of primes in the 9th-order Fibonacci number sequence, A251746.
Original entry on oeis.org
10, 19, 59, 79, 12487
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251746.
-
a={0,0,0,0,0,0,0,1,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
A255531
Indices of primes in the 9th-order Fibonacci number sequence, A251747.
Original entry on oeis.org
10, 16, 116, 236, 316, 1376, 5066, 103696, 120949
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251747.
-
a={0,0,0,0,0,0,1,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,0,0,0,0,1,0,0},125000],?PrimeQ]]-1 (* _Harvey P. Dale, Nov 29 2017 *)
A255532
Indices of primes in the 9th-order Fibonacci number sequence, A251749.
Original entry on oeis.org
10, 14, 19, 29, 404, 1744, 8854, 27754
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251749.
-
a={0,0,0,0,1,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
A255533
Indices of primes in the 9th-order Fibonacci number sequence, A251750.
Original entry on oeis.org
10, 33, 43, 253, 1253, 2389
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251750.
-
a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
A255534
Indices of primes in the 9th-order Fibonacci number sequence, A251751.
Original entry on oeis.org
10, 12, 232, 502
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A000288,
A000322,
A000383,
A249413,
A060455,
A079262,
A251751.
-
a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)
Comments