A217165
a(n) is the least value of k such that the decimal expansion of Fibonacci(k) contains n consecutive identical digits.
Original entry on oeis.org
0, 10, 49, 66, 118, 883, 2202, 6493, 62334, 135241, 353587, 1162507, 5155873, 7280413, 37356153
Offset: 1
-
// See Links section.
-
k = 0; Join[{0}, Table[While[d = IntegerDigits[Fibonacci[k]]; ! MemberQ[Partition[Differences[d], n - 1, 1], Table[0, {n - 1}]], k++]; k, {n, 2, 8}]] (* T. D. Noe, Oct 02 2012 *)
-
def A217165(n):
if n == 1:
return 0
else:
l, y, x = [str(d)*n for d in range(10)], 0, 1
for m in range(1, 10**9):
s = str(x)
for k in l:
if k in s:
return m
y, x = x, y+x
return 'search limit reached'
# Chai Wah Wu, Dec 17 2014
A217166
a(n) is the least value of k such that the decimal expansion of Lucas(k) contains n consecutive identical digits.
Original entry on oeis.org
0, 5, 36, 78, 112, 538, 3139, 6436, 17544, 82864, 328448, 1701593, 1701593, 8030342, 8030342, 77552742
Offset: 1
-
// See Links section.
-
k = 0; Join[{0}, Table[While[d = IntegerDigits[LucasL[k]]; ! MemberQ[Partition[Differences[d], n - 1, 1], Table[0, {n - 1}]], k++]; k, {n, 2, 8}]] (* T. D. Noe, Oct 02 2012 *)
-
def A217166(n):
if n == 1:
return 0
else:
l, y, x = [str(d)*n for d in range(10)], 2, 1
for m in range(1, 10**9):
s = str(x)
for k in l:
if k in s:
return m
y, x = x, y+x
return 'search limit reached'
# Chai Wah Wu, Dec 17 2014
A217188
a(n) is the number of digits in the decimal representation of the smallest power of 6 that contains n consecutive identical digits.
Original entry on oeis.org
1, 4, 4, 90, 176, 289, 1170, 6640, 21569, 21569, 54421
Offset: 1
-
k = 0; Join[{1}, Table[While[d = IntegerDigits[6^k]; prt = Partition[Differences[d], n - 1, 1]; ! MemberQ[prt, Table[0, {n - 1}]], k++]; Length[d], {n, 2, 8}]] (* T. D. Noe, Oct 03 2012 *)
Comments