cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A217170 a(n) is the first digit (from the left) to appear five times in succession in the decimal representation of n^A217160(n).

Original entry on oeis.org

6, 5, 6, 4, 2, 5, 4, 5, 0, 6, 5, 4, 4, 1, 6, 5, 5, 9, 0, 2, 8, 6, 2, 5, 9, 2, 1, 8, 0, 2, 6, 8, 2, 6, 2, 6, 3, 8, 0, 8, 7, 0, 1, 7, 6, 3, 6, 5, 0, 6, 9, 6, 6, 9, 2, 2, 4, 4, 0, 4, 9, 4, 2, 3, 4, 4, 8, 5, 0, 2, 9, 9, 0, 9, 9, 0, 9, 6, 0, 0, 4, 9, 1, 0, 6, 1, 2
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 4, 1]; ! MemberQ[df, {0, 0, 0, 0}], k++]; d[[Position[df, {0, 0, 0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217172 a(n) is the first digit (from the left) to appear seven times in succession in the decimal representation of n^A217162(n).

Original entry on oeis.org

7, 2, 7, 8, 2, 3, 7, 2, 0, 6, 4, 6, 3, 2, 7, 9, 4, 9, 0, 4, 2, 4, 5, 8, 4, 2, 5, 6, 0, 2, 2, 3, 8, 7, 2, 5, 3, 0, 0, 4, 1, 9, 2, 7, 0, 8, 1, 6, 0, 4, 4, 2, 1, 2, 3, 1, 3, 4, 0, 2, 8, 8, 7, 5, 1, 7, 6, 9, 0, 4, 8, 1, 7, 5, 9, 6, 4, 3, 0, 2, 1, 1, 7, 8, 7, 8, 8
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 6, 1]; ! MemberQ[df, {0, 0, 0, 0, 0, 0}],  k++]; d[[Position[df, {0, 0, 0, 0, 0, 0}][[1, 1]]]], {n, 2, 100}] (* T. D. Noe, Oct 02 2012 *)

A217175 a(n) is the first digit (from the left) to appear n times in succession in the decimal representation of the Fibonacci(A217165(n)).

Original entry on oeis.org

0, 5, 7, 7, 1, 5, 7, 7, 3, 2, 4, 3, 4, 2, 4
Offset: 1

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    k = 0; Join[{0}, Table[While[d = IntegerDigits[Fibonacci[k]]; prt = Partition[Differences[d], n - 1, 1]; ! MemberQ[prt, Table[0, {n - 1}]], k++]; d[[Position[prt, Table[0, {n - 1}]][[1, 1]]]], {n, 2, 8}]] (* T. D. Noe, Oct 03 2012 *)
  • Python
    def A217175(n):
        if n == 1:
            return 0
        else:
            l, y, x = [str(d)*n for d in range(10)], 0, 1
            for m in range(1, 10**9):
                s = str(x)
                for k in range(10):
                    if l[k] in s:
                        return k
                y, x = x, y+x
            return 'search limit reached'
    # Chai Wah Wu, Dec 17 2014

Extensions

a(10)-a(11) from Chai Wah Wu, Dec 17 2014
a(12)-a(15) from Nick Hobson, Feb 14 2024

A217176 a(n) is the first digit (from the left) to appear n times in succession in the decimal representation of the Lucas(A217166(n)).

Original entry on oeis.org

2, 1, 3, 0, 2, 2, 9, 7, 2, 1, 1, 5, 5, 7, 7, 9
Offset: 1

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    k = 0; Join[{2}, Table[While[d = IntegerDigits[LucasL[k]]; prt = Partition[Differences[d], n - 1, 1]; ! MemberQ[prt, Table[0, {n - 1}]], k++]; d[[Position[prt, Table[0, {n - 1}]][[1, 1]]]], {n, 2, 8}]] (* T. D. Noe, Oct 03 2012 *)
  • Python
    def A217176(n):
        if n == 1:
            return 2
        else:
            l, y, x = [str(d)*n for d in range(10)], 2, 1
            for m in range(1, 10**9):
                s = str(x)
                for k in range(10):
                    if l[k] in s:
                        return k
                y, x = x, y+x
            return 'search limit reached'
    # Chai Wah Wu, Dec 17 2014

Extensions

a(11) from Chai Wah Wu, Dec 17 2014
a(12)-a(16) from Nick Hobson, Feb 03 2024

A217173 a(n) is the first digit (from the left) to appear eight times in succession in the decimal representation of n^A217163(n).

Original entry on oeis.org

1, 1, 1, 5, 7, 1, 2, 1, 0, 0, 2, 8, 3, 8, 0, 8, 8, 5, 0, 0, 5, 5, 7, 5, 4, 5, 8, 4, 0, 1, 1, 2, 7, 7, 2, 5, 5, 7, 0, 6, 8, 1, 2, 3, 6, 6, 5, 1, 0, 0, 4, 3, 5, 8, 4, 5, 3, 6, 0, 2, 9, 8, 2, 4, 1, 2, 8, 5, 0, 0, 9, 6, 8, 0, 3, 6, 4, 3, 0, 1, 0, 5, 7, 9, 7, 8, 1
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 7, 1]; ! MemberQ[df, {0, 0, 0, 0, 0, 0, 0}],  k++]; d[[Position[df, {0, 0, 0, 0, 0, 0, 0}][[1, 1]]]], {n, 2, 10}] (* T. D. Noe, Oct 02 2012 *)

A217174 a(n) is the first digit (from the left) to appear nine times in succession in the decimal representation of n^A217164(n).

Original entry on oeis.org

9, 2, 9, 5, 1, 0, 9, 1, 0, 9, 2, 8, 8, 6, 9, 0, 7, 8, 0, 6, 7, 5, 7, 5, 2, 2, 7, 6, 0, 1, 9, 9, 4, 6, 6, 2, 3, 7, 0, 2, 5, 3, 1, 5, 6, 3, 9, 0, 0, 8, 4, 3, 1, 6, 5, 1, 9, 6, 0, 4, 4, 7, 9, 6, 6, 5, 8, 1, 0, 3, 5, 9, 7, 7, 3, 0, 7, 6, 0, 1, 9, 5, 3, 6, 7, 0, 4
Offset: 2

Views

Author

V. Raman, Sep 27 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[d = IntegerDigits[n^k]; df = Partition[Differences[d], 8, 1]; ! MemberQ[df, {0, 0, 0, 0, 0, 0, 0, 0}], k++]; d[[Position[df, {0, 0, 0, 0, 0, 0, 0, 0}][[1, 1]]]], {n, 2, 10}] (* T. D. Noe, Oct 02 2012 *)

A215783 The least k such that the decimal expansion of 3^k contains 9 consecutive n's.

Original entry on oeis.org

107189, 44152, 22791, 67449, 125406, 67390, 90785, 67448, 32311, 164065
Offset: 0

Views

Author

V. Raman, Aug 23 2012

Keywords

Examples

			3^107189 = 141...2860000000000209...483 (51143 decimal digits, 0's start at position 45713).
		

Crossrefs

A217185 a(n) is the number of digits in the decimal representation of the smallest power of 2 that contains n consecutive identical digits.

Original entry on oeis.org

1, 5, 8, 13, 67, 293, 293, 2576, 12790, 12790, 81874, 312865, 520061, 2063822
Offset: 1

Views

Author

V. Raman, Sep 27 2012

Keywords

Comments

Number of digits in 2^k is equal to floor(1 + k*log_10(2)).

Crossrefs

Programs

  • Mathematica
    k = 0; Join[{1}, Table[While[d = IntegerDigits[2^k]; prt = Partition[Differences[d], n - 1, 1]; ! MemberQ[prt, Table[0, {n - 1}]], k++]; Length[d], {n, 2, 8}]] (* T. D. Noe, Oct 03 2012 *)
Previous Showing 11-18 of 18 results.