cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A227174 Numbers n such that (140^n + 139^n)/279 is prime.

Original entry on oeis.org

23, 41, 43, 151, 2927, 6133
Offset: 1

Views

Author

Jean-Louis Charton, Jul 03 2013

Keywords

Comments

All terms are prime.
a(7) > 10^4.
a(7) > 43400. - Lucas A. Brown, Nov 26 2020

Crossrefs

Programs

A301510 Smallest positive number b such that ((b+1)^prime(n) + b^prime(n))/(2*b + 1) is prime, or 0 if no such b exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 16, 1, 11, 6, 37, 1, 9, 120, 9, 1, 2, 67, 16, 1, 26, 103, 12, 60, 1, 239, 4, 40, 2, 44, 174, 33, 1, 3, 260, 114, 1, 161, 70, 1, 3, 2, 3, 50, 45, 472, 228, 183, 66, 37, 7, 122, 235, 68, 102, 294, 8, 13, 1, 40, 62, 143, 1, 61, 7
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Mar 22 2018

Keywords

Comments

Conjecture: a(n) > 0 for every n > 1.
Records: 1, 4, 16, 37, 120, 239, 260, 472, 917, 1539, 6633, 7050, 12818, ..., which occur at n = 2, 10, 13, 17, 20, 32, 41, 52, 72, 128, 171, 290, 309, ... - Robert G. Wilson v, Jun 16 2018

Examples

			a(10) = 4 because (5^29 + 4^29)/9 = 2149818248341 is prime and (2^29 + 1^29)/3, (3^29 + 2^29)/5 and (4^29 + 3^29)/7 are all composite.
		

Crossrefs

Numbers n such that ((b+1)^n + b^n)/(2*b + 1) is prime for b = 1 to 18: A000978, A057469, A128066, A128335, A128336, A187805, A181141, A187819, A217095, A185239, A213216, A225097, A224984, A221637, A227170, A228573, A227171, A225818.

Programs

  • Mathematica
    Table[p = Prime[n]; k = 1; While[q = ((b+1)^n+b^n)/(2*b+1); ! PrimeQ[q], k++]; k, {n, 200}]
    f[n_] := Block[{b = 1, p = Prime@ n}, While[! PrimeQ[((b +1)^p + b^p)/(2b +1)], b++]; b]; Array[f, 70, 2] (* Robert G. Wilson v, Jun 13 2018 *)
  • PARI
    for(n=2, 200, b=0; until(isprime((((b+1)^prime(n)+b^prime(n))/(2*b+1))), b++); print1(b,", ")) \\ corrected by Eric Chen, Jun 06 2018

Formula

a(n) = A250201(2*prime(n)) - 1 for n >= 2. - Eric Chen, Jun 06 2018

A328660 Numbers k such that (10^k + 7^k)/17 is prime.

Original entry on oeis.org

3, 5, 11, 19, 1259, 1399, 2539, 2843, 5857, 10589
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Oct 24 2019

Keywords

Comments

All terms are odd primes. Proof: a(n) cannot be even, because (10^(2*k) + 7^(2*k))/17 is not an integer. If odd number k = x*y, then (10^x + 7^x) and (10^y + 7^y) are nontrivial factors of (10^(x*y) + 7^(x*y)). In conclusion, a(n) must be odd and prime. - Daniel Suteu, Jan 22 2020
The corresponding primes are 79, 6871, 5998666279, 588905817363845479, ...
a(11) > 60000. - Michael S. Branicky, Jul 11 2024

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime((10^p+7^p) div 17)]; // Modified by Jinyuan Wang, Jan 22 2020
  • Mathematica
    Select[Table[Prime[n], {n, 500}], PrimeQ[(10^#+7^#)/17] &] (* Modified by Jinyuan Wang, Jan 22 2020 *)
  • PARI
    forprime(k=3, 10000, if(isprime((10^k+7^k)/17), print1(k, ", ")))
    
Previous Showing 11-13 of 13 results.