cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A223084 Trajectory of 80 under the map n-> A006369(n).

Original entry on oeis.org

80, 107, 143, 191, 255, 170, 227, 303, 202, 269, 359, 479, 639, 426, 284, 379, 505, 673, 897, 598, 797, 1063, 1417, 1889, 2519, 3359, 4479, 2986, 3981, 2654, 3539, 4719, 3146, 4195, 5593, 7457, 9943, 13257, 8838, 5892, 3928, 5237, 6983, 9311, 12415, 16553, 22071
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[80];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {80}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {80}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)

A223085 Trajectory of 82 under the map n-> A006369(n).

Original entry on oeis.org

82, 109, 145, 193, 257, 343, 457, 609, 406, 541, 721, 961, 1281, 854, 1139, 1519, 2025, 1350, 900, 600, 400, 533, 711, 474, 316, 421, 561, 374, 499, 665, 887, 1183, 1577, 2103, 1402, 1869, 1246, 1661, 2215, 2953, 3937, 5249, 6999, 4666, 6221, 8295, 5530, 7373
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end;
    t1:=[82];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {82}; While[n = t[[-1]]; s = Switch[Mod[n, 3], 0, 2*n/3, 1, (4*n - 1)/3, 2, (4*n + 1)/3]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> Switch[Mod[n, 3], 0, 2n/3, 1, (4n - 1)/3, , (4n + 1)/3]}, {82}, 60] // Flatten (* _Jean-François Alcover, Mar 01 2019 *)
    NestList[If[Divisible[#,3],(2#)/3,Floor[(4#)/3+1/2]]&,82,50] (* Harvey P. Dale, Sep 22 2019 *)

A223086 Trajectory of 64 under the map n-> A006368(n).

Original entry on oeis.org

64, 96, 144, 216, 324, 486, 729, 547, 410, 615, 461, 346, 519, 389, 292, 438, 657, 493, 370, 555, 416, 624, 936, 1404, 2106, 3159, 2369, 1777, 1333, 1000, 1500, 2250, 3375, 2531, 1898, 2847, 2135, 1601, 1201, 901, 676, 1014, 1521, 1141, 856, 1284, 1926, 2889
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
    t1:=[64];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {64}; While[n = t[[-1]]; s = If[EvenQ[n], 3 n/2, Round[3 n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {64}, 100] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

A223087 Trajectory of 80 under the map n-> A006368(n).

Original entry on oeis.org

80, 120, 180, 270, 405, 304, 456, 684, 1026, 1539, 1154, 1731, 1298, 1947, 1460, 2190, 3285, 2464, 3696, 5544, 8316, 12474, 18711, 14033, 10525, 7894, 11841, 8881, 6661, 4996, 7494, 11241, 8431, 6323, 4742, 7113, 5335, 4001, 3001, 2251, 1688, 2532, 3798, 5697
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2013

Keywords

Comments

It is conjectured that this trajectory does not close on itself.

Crossrefs

Programs

  • Maple
    f:=n-> if n mod 2 = 0 then 3*n/2 elif n mod 4 = 1 then (3*n+1)/4 else (3*n-1)/4; fi;
    t1:=[80];
    for n from 1 to 100 do t1:=[op(t1),f(t1[nops(t1)])]; od:
    t1;
  • Mathematica
    t = {80}; While[n = t[[-1]]; s = If[EvenQ[n], 3*n/2, Round[3*n/4]]; Length[t] < 100 && ! MemberQ[t, s], AppendTo[t, s]]; t (* T. D. Noe, Mar 22 2013 *)
    SubstitutionSystem[{n_ :> If[EvenQ[n], 3n/2, Round[3n/4]]}, {80}, 100] // Flatten (* Jean-François Alcover, Mar 01 2019 *)

A368227 Square array read by ascending antidiagonals: row n is the trajectory of n under the A006369 map.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 5, 3, 3, 1, 0, 6, 7, 7, 2, 2, 1, 0, 7, 4, 9, 9, 3, 3, 1, 0, 8, 9, 5, 6, 6, 2, 2, 1, 0, 9, 11, 6, 7, 4, 4, 3, 3, 1, 0, 10, 6, 15, 4, 9, 5, 5, 2, 2, 1, 0, 11, 13, 4, 10, 5, 6, 7, 7, 3, 3, 1, 0, 12, 15, 17, 5, 13, 7, 4, 9, 9, 2, 2, 1, 0
Offset: 0

Views

Author

Paolo Xausa, Dec 18 2023

Keywords

Examples

			Array begins:
  [ 0]   0,  0,  0,  0,  0,  0,  0,  0,  0,   0,  0, ... = A000004
  [ 1]   1,  1,  1,  1,  1,  1,  1,  1,  1,   1,  1, ... = A000012
  [ 2]   2,  3,  2,  3,  2,  3,  2,  3,  2,   3,  2, ... = A010693
  [ 3]   3,  2,  3,  2,  3,  2,  3,  2,  3,   2,  3, ... = A176059
  [ 4]   4,  5,  7,  9,  6,  4,  5,  7,  9,   6,  4, ... = A094328
  [ 5]   5,  7,  9,  6,  4,  5,  7,  9,  6,   4,  5, ... = A094328 (shifted)
  [ 6]   6,  4,  5,  7,  9,  6,  4,  5,  7,   9,  6, ... = A094328 (shifted)
  [ 7]   7,  9,  6,  4,  5,  7,  9,  6,  4,   5,  7, ... = A094328 (shifted)
  [ 8]   8, 11, 15, 10, 13, 17, 23, 31, 41,  55, 73, ... = A028394
  [ 9]   9,  6,  4,  5,  7,  9,  6,  4,  5,   7,  9, ... = A094328 (shifted)
  [10]  10, 13, 17, 23, 31, 41, 55, 73, 97, 129, 86, ... = A028394 (shifted)
  ...    |   |   |
      A001477|A168222
          A006369
		

Crossrefs

Programs

  • Mathematica
    A006369[n_]:=If[Divisible[n,3],2n/3,Round[4n/3]];
    A368227list[dmax_]:=With[{a=Reverse[Table[NestList[A006369,n-1,dmax-n],{n,dmax}]]},Array[Diagonal[a,#]&,dmax,1-dmax]];
    A368227list[15] (* Generates 15 antidiagonals *)
Previous Showing 11-15 of 15 results.