cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A219323 Number of standard Young tableaux for partitions of n into exactly 10 distinct parts.

Original entry on oeis.org

44261486084874072183645699204710400, 436729628461295765400173291136614400, 6441891864721973386724377238726246400, 67713874217528144366021825416423334400, 748428489363219498086429630401834036500, 7038929756961099433630173212155312339950
Offset: 55

Views

Author

Alois P. Heinz, Nov 17 2012

Keywords

Crossrefs

Column k=10 of A219311.
Cf. A218293.

A219356 Triangle read by rows: A219274 with rows reversed.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 5, 1, 5, 9, 16, 1, 6, 14, 49, 1, 7, 20, 92, 70, 1, 8, 27, 153, 204, 168, 1, 9, 35, 235, 405, 738, 768, 1, 10, 44, 341, 715, 1815, 3300, 1, 11, 54, 474, 1166, 3630, 9460, 7887, 1, 12, 65, 637, 1794, 6578, 21307, 28743, 15015
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2012

Keywords

Comments

For more information see A219274.

Examples

			A219274 with rows reversed begins:
  1;
  1;
  1;
  1,  2;
  1,  3;
  1,  4,  5;
  1,  5,  9,  16;
  1,  6, 14,  49;
  1,  7, 20,  92,  70;
  1,  8, 27, 153, 204, 168;
  1,  9, 35, 235, 405, 738, 768;
  ...
		

Crossrefs

Row lengths are A122797 (for n>0).
Row sums give: A218293.
Last elements of rows give: A219339.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=i*(i+1)/2;
          `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
        end:
    T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])):
    seq(seq(T(n, n-k), k=0..(n-floor(sqrt(2*n)+1/2))), n=0..14);

A225121 Number of standard Young tableaux with shapes corresponding to partitions into distinct parts with minimal difference 2.

Original entry on oeis.org

1, 1, 1, 1, 4, 5, 15, 21, 56, 246, 525, 1573, 5764, 14092, 41405, 136995, 772552, 2148290, 8806629, 31679365, 155743665, 495240074, 2049655762, 7403470138, 32627363920, 207316068370, 784695179515, 3721285661481, 16967347935561, 82192321793926, 455572563875425
Offset: 0

Views

Author

Joerg Arndt, Apr 29 2013

Keywords

Crossrefs

Cf. A218293 (tableaux with shapes corresponding to partitions into distinct parts).
Cf. A000085 (standard Young tableaux for all shapes).

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=ceil(i*(i+2)/4);
          `if`(n=s, h([l[], seq(i-2*j, j=0..iquo(i-1,2))]), `if`(n>s, 0,
           g(n, i-1, l)+`if`(i>n, 0, g(n-i, i-2, [l[], i]))))
        end:
    a:= n-> g(n, n, []):
    seq(a(n), n=0..35);  # Alois P. Heinz, Apr 29 2013
  • Mathematica
    h[l_List] := Module[{n}, n = Length[l]; Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := Module[{s}, s = Ceiling[i*(i+2)/4]; If[n==s, h[Join[l, Table[i-2*j, {j, 0, Quotient[i-1, 2]}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-2, Append[l, i]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jul 02 2015, after  Alois P. Heinz *)
Previous Showing 11-13 of 13 results.