cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A238181 Decimal expansion of sum_(n>=1) H(n)^2/n^3 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,3)).

Original entry on oeis.org

1, 6, 5, 1, 9, 4, 2, 7, 9, 2, 7, 0, 4, 4, 9, 8, 6, 2, 3, 9, 6, 2, 6, 9, 3, 7, 6, 1, 1, 1, 4, 4, 9, 4, 0, 1, 6, 1, 1, 7, 6, 3, 1, 7, 5, 1, 5, 9, 6, 5, 6, 0, 6, 3, 3, 2, 1, 3, 8, 5, 2, 0, 9, 5, 6, 0, 8, 5, 9, 7, 5, 3, 0, 1, 0, 5, 3, 8, 0, 9, 8, 8, 2, 5, 7, 7, 6, 6, 5, 0, 0, 4, 2, 8, 2, 1, 7, 0, 6, 9
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.6519427927044986239626937611144940161...
		

Crossrefs

Programs

  • Mathematica
    7/2*Zeta[5] - Zeta[2]*Zeta[3] // RealDigits[#, 10, 100]& // First
  • PARI
    7/2*zeta(5) - zeta(2)*zeta(3) \\ Stefano Spezia, May 22 2025

Formula

7/2*zeta(5) - zeta(2)*zeta(3).

A238182 Decimal expansion of Sum_{n>=1} H(n)^2/n^4 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,4)).

Original entry on oeis.org

1, 2, 2, 1, 8, 7, 9, 9, 4, 5, 3, 1, 9, 8, 8, 0, 1, 3, 8, 5, 1, 8, 8, 0, 6, 4, 7, 5, 2, 9, 0, 9, 9, 4, 8, 1, 2, 5, 6, 9, 0, 4, 1, 5, 4, 4, 0, 2, 1, 6, 7, 2, 4, 6, 4, 1, 8, 3, 5, 3, 3, 3, 5, 9, 8, 8, 7, 0, 0, 8, 1, 9, 3, 6, 3, 2, 7, 0, 4, 9, 6, 6, 6, 7, 7, 1, 5, 8, 6, 3, 0, 4, 6, 4, 5, 4, 4, 6, 8, 6
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Comments

No closed form of S(2,2q) is known to date, except for S(2,2) (A218505) and S(2,4) (this sequence).

Examples

			1.221879945319880138518806475290994812569...
		

Crossrefs

Programs

  • Mathematica
    97/24*Zeta[6] - 2*Zeta[3]^2 // RealDigits[#, 10, 100]& // First

Formula

97/24*zeta(6) - 2*zeta(3)^2.

A345203 Decimal expansion of zeta(2) + 2*zeta(3).

Original entry on oeis.org

4, 0, 4, 9, 0, 4, 7, 8, 7, 3, 1, 6, 7, 4, 1, 5, 0, 0, 7, 2, 7, 1, 8, 9, 1, 4, 8, 9, 6, 6, 8, 9, 2, 5, 1, 7, 0, 7, 4, 8, 9, 2, 2, 4, 8, 5, 8, 8, 7, 7, 9, 6, 2, 0, 1, 3, 2, 0, 1, 0, 1, 3, 4, 0, 0, 5, 3, 6, 8, 3, 8, 8, 1, 9, 7, 5, 8, 2, 7, 0, 5, 4, 2, 0, 6, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2021

Keywords

Comments

Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Springer, 2013, section 3.71, p. 150.

Examples

			4.04904787316741500727189148966892517074892248588779...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[2] + 2*Zeta[3], 10, 100][[1]]

Formula

Equals A013661 + 2 * A002117.
Equals Sum_{k>=1} (k+2)/k^3.
Equals Sum_{k>=1} H(k)*H(k+1)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2011).
Equals Sum_{k>=1} (H(k)+1)/k^2.
Equals 1 + Sum_{k>=2} H(k)/(k-1)^2.
Equals Sum_{k>=2} (k-1)^2*(zeta(k)-1).
Equals 3 + Sum_{k>=3} (-1)^(k+1)*k^2*(zeta(k)-1).
Equals Integral_{x=0..1} log(x)*(log(x)-1)/(1-x) dx.
Equals Integral_{x>=1} log(x)*(log(x)+1)/(x*(x-1)) dx.
Equals Integral_{x>=0} x*(x+1)/(exp(x)-1) dx.

A241753 Decimal expansion of Sum_{n>=1} (H(n)/(n+1))^2, where H(n) is the n-th harmonic number.

Original entry on oeis.org

2, 9, 7, 6, 3, 8, 8, 8, 9, 2, 7, 0, 5, 6, 3, 0, 0, 2, 6, 6, 6, 9, 0, 1, 0, 1, 6, 5, 4, 8, 8, 2, 1, 1, 7, 3, 2, 6, 3, 0, 5, 6, 5, 1, 1, 7, 7, 7, 6, 4, 9, 8, 9, 9, 6, 1, 2, 8, 1, 8, 4, 5, 9, 2, 4, 7, 1, 3, 3, 1, 6, 9, 4, 5, 1, 4, 1, 6, 4, 3, 2, 8, 0, 3, 1, 5, 0, 1, 4, 9, 8, 8, 3, 9, 6, 7, 4, 7, 7, 2
Offset: 1

Views

Author

Jean-François Alcover, Apr 28 2014

Keywords

Examples

			2.97638889270563002666901016548821173263...
		

Crossrefs

Cf. A218505.

Programs

  • Mathematica
    RealDigits[11*Pi^4/360, 10, 100] // First
  • PARI
    11*Pi^4/360 \\ Stefano Spezia, May 26 2025

Formula

Equals 1/(2*Pi)*Integral_{x=0..Pi} (Pi-t)^2*log(2*sin(t/2))^2 dt.
Equals 11/17*A218505.
Equals 11*Pi^4/360. - Vaclav Kotesovec, Apr 28 2014

A238183 Decimal expansion of sum_(n>=1) H(n)^2/n^7 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,7)).

Original entry on oeis.org

1, 0, 1, 9, 4, 8, 3, 4, 9, 7, 4, 9, 4, 3, 8, 2, 2, 8, 6, 2, 0, 6, 4, 9, 6, 6, 7, 5, 9, 2, 8, 1, 2, 6, 5, 1, 5, 0, 6, 1, 8, 9, 4, 4, 2, 2, 9, 0, 4, 2, 8, 8, 8, 6, 3, 3, 3, 4, 0, 1, 4, 6, 3, 1, 6, 1, 9, 8, 5, 3, 7, 4, 0, 0, 6, 8, 7, 3, 5, 5, 5, 0, 0, 2, 7, 3, 1, 4, 6, 2, 1, 0, 0, 3, 1, 6, 6, 5, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.019483497494382286206496675928126515...
		

Crossrefs

Programs

  • Mathematica
    Zeta[3]^3/3 - 5/2*Zeta[4]*Zeta[5] - 7/2*Zeta[3]*Zeta[6] - Zeta[2]*Zeta[7] + 55/6*Zeta[9] // RealDigits[#, 10, 100]& // First

Formula

zeta(3)^3/3-5/2*zeta(4)*zeta(5)-7/2*zeta(3)*zeta(6)-zeta(2)*zeta(7)+55/6*zeta(9).

A345204 Decimal expansion of 5/4 + Pi^2/8 + zeta(3).

Original entry on oeis.org

3, 6, 8, 5, 7, 5, 7, 4, 5, 3, 2, 9, 5, 7, 6, 4, 1, 1, 2, 7, 5, 4, 0, 4, 9, 5, 3, 6, 4, 9, 5, 9, 6, 8, 8, 8, 2, 6, 7, 9, 1, 9, 8, 7, 1, 8, 2, 4, 5, 5, 9, 7, 7, 1, 0, 0, 9, 3, 9, 4, 0, 2, 2, 7, 3, 6, 9, 3, 4, 3, 8, 0, 8, 5, 8, 8, 7, 1, 3, 7, 4, 5, 5, 6, 1, 6, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2021

Keywords

Examples

			3.68575745329576411275404953649596888267919871824559...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5/4 + Pi^2/8 + Zeta[3], 10, 100][[1]]
  • PARI
    5/4 + Pi^2/8 + zeta(3) \\ Stefano Spezia, Jan 30 2025

Formula

Equals Sum_{k>=1} H(k)*H(k+2)/(k*(k+2)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2011).
Equals 5/4 + A111003 + A002117.

A238135 Decimal expansion of Euler's Multi-Zeta Sum S(2,3) = Sum_{n >= 1} (Sum_{k=1..n}((-1)^(k + 1)/k)^2/(n + 1)^3).

Original entry on oeis.org

1, 5, 6, 1, 6, 6, 9, 3, 3, 3, 8, 1, 1, 7, 6, 9, 1, 5, 8, 8, 1, 0, 3, 5, 9, 0, 9, 6, 8, 7, 9, 8, 8, 1, 9, 3, 6, 8, 5, 7, 7, 6, 7, 0, 9, 8, 4, 0, 3, 0, 3, 8, 7, 2, 9, 5, 7, 5, 2, 9, 3, 5, 4, 4, 9, 7, 0, 7, 5, 0, 3, 7, 4, 4, 0, 2, 9, 5, 7, 9, 1, 4, 5, 5, 2, 0, 5, 6, 5, 3, 7, 0, 9, 3, 5, 8, 1, 4, 7, 5
Offset: 0

Views

Author

Jean-François Alcover, Feb 18 2014

Keywords

Examples

			0.1561669333811769158810359096879881936857767...
		

Crossrefs

Cf. A218505.

Programs

  • Mathematica
    4*PolyLog[5, 1/2] - 1/30*Log[2]^5 - 17/32*Zeta[5] - 11/720*Pi^4*Log[2] + 7/4*Zeta[3]*Log[2]^2 + 1/18*Pi^2*Log[2]^3 - 1/8*Pi^2*Zeta[3] // RealDigits[#, 10, 100]& // First
  • PARI
    4*polylog(5,1/2)-1/30*log(2)^5-17/32*zeta(5) - 11/720*Pi^4*log(2) + 7/4*zeta(3)*log(2)^2 + 1/18*Pi^2*log(2)^3 - 1/8*Pi^2*zeta(3) \\ Charles R Greathouse IV, Jul 18 2014
    
  • SageMath
    RR = RealBallField(380)
    f = fast_callable(4*polylog(5, 1/2) - 1/30*log(2)^5 - 17/32*zeta(5) - 11/720*pi^4*log(2) + 7/4*zeta(3)*log(2)^2 + 1/18*pi^2*log(2)^3 - 1/8*pi^2*zeta(3), vars=[x], domain=RR)
    print([int(t) for t in str(f(0))[3:103]]) # Peter Luschny, May 06 2020

A256593 Decimal expansion of 1/Pi*Integral_{0..Pi} x^2*log(2*cos(x/2))^2 dx, one of the log-cosine integrals related to zeta(4).

Original entry on oeis.org

5, 9, 5, 2, 7, 7, 7, 7, 8, 5, 4, 1, 1, 2, 6, 0, 0, 5, 3, 3, 3, 8, 0, 2, 0, 3, 3, 0, 9, 7, 6, 4, 2, 3, 4, 6, 5, 2, 6, 1, 1, 3, 0, 2, 3, 5, 5, 5, 2, 9, 9, 7, 9, 9, 2, 2, 5, 6, 3, 6, 9, 1, 8, 4, 9, 4, 2, 6, 6, 3, 3, 8, 9, 0, 2, 8, 3, 2, 8, 6, 5, 6, 0, 6, 3, 0, 0, 2, 9, 9, 7, 6, 7, 9, 3, 4, 9, 5, 4, 4, 7, 8
Offset: 1

Views

Author

Jean-François Alcover, Apr 03 2015

Keywords

Examples

			5.952777785411260053338020330976423465261130235552997992256369...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[11*Pi^4/180, 10, 102] // First

Formula

1/Pi*Integral_{0..Pi} x^2*log(2*cos(x/2))^2 dx = 11*Pi^4/180 = 11/2*zeta(4).

A384457 Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

3, 5, 9, 3, 4, 2, 7, 9, 4, 1, 7, 7, 4, 9, 4, 2, 9, 6, 0, 2, 5, 5, 1, 8, 2, 4, 0, 7, 0, 3, 3, 3, 9, 2, 1, 9, 5, 9, 1, 6, 9, 5, 4, 8, 0, 3, 5, 1, 9, 3, 3, 8, 9, 3, 7, 6, 9, 7, 3, 8, 6, 1, 1, 9, 1, 8, 8, 8, 2, 8, 1, 2, 6, 9, 6, 1, 9, 2, 6, 3, 4, 0, 3, 7, 3, 9, 5, 7, 8, 6, 7, 6, 8, 6, 4, 7, 4, 5, 8, 7, 3, 5, 5, 3, 7
Offset: 1

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			3.59342794177494296025518240703339219591695480351933...
		

References

  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3] + (Pi^2*Log[2] + Log[2]^3)/3, 10, 120][[1]]
  • PARI
    zeta(3) + (Pi^2*log(2) + log(2)^3)/3

Formula

Equals zeta(3) + (Pi^2*log(2) + log(2)^3)/3.

A384458 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^3/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

2, 7, 4, 1, 2, 5, 7, 4, 6, 5, 4, 9, 2, 5, 2, 9, 7, 0, 6, 7, 8, 8, 3, 3, 0, 3, 6, 7, 8, 7, 5, 0, 4, 7, 0, 7, 6, 2, 6, 5, 4, 4, 8, 9, 2, 9, 5, 5, 7, 5, 2, 9, 6, 5, 4, 7, 1, 8, 1, 4, 6, 2, 7, 5, 5, 3, 2, 1, 6, 0, 6, 7, 5, 8, 7, 1, 4, 1, 9, 7, 0, 1, 0, 3, 5, 8, 3, 7, 2, 2, 3, 8, 6, 9, 4, 8, 6, 6, 3, 0, 7, 0, 4, 6, 6
Offset: 0

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			0.27412574654925297067883303678750470762654489295575...
		

References

  • Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 245, eq. (4.149).
  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi*Log[2])^2/8 + 5*Zeta[4]/8 - 9*Zeta[3]*Log[2]/8 - Log[2]^4/4, 10, 120][[1]]
  • PARI
    (Pi*log(2))^2/8 + 5*zeta(4)/8 - 9*zeta(3)*log(2)/8 - log(2)^4/4

Formula

Equals (Pi*log(2))^2/8 + 5*zeta(4)/8 - 9*zeta(3)*log(2)/8 - log(2)^4/4.
Showing 1-10 of 14 results. Next