cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A218678 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^(3*n) * x^n/n! * exp(-n*x*(1+n*x)^3).

Original entry on oeis.org

1, 1, 4, 22, 161, 1321, 12541, 130383, 1482875, 18153076, 237430711, 3295833146, 48274094584, 742868875984, 11963384310515, 200974595790271, 3511980095379727, 63682377891348689, 1195661594431548085, 23199930176668566579, 464421513762097397125, 9576744471125816269165
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 161*x^4 + 1321*x^5 + 12541*x^6 +...
where
A(x) = 1 + (1+x)^3*x*exp(-x*(1+x)^3) + 2^2*(1+2*x)^6*x^2/2!*exp(-2*x*(1+2*x)^3) + 3^3*(1+3*x)^9*x^3/3!*exp(-3*x*(1+3*x)^3) + 4^4*(1+4*x)^12*x^4/4!*exp(-4*x*(1+4*x)^3) + 5^5*(1+5*x)^15*x^5/5!*exp(-5*x*(1+5*x)^3) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);A=sum(k=0,n,k^k*(1+k*x)^(3*k)*x^k/k!*exp(-k*x*(1+k*x)^3+x*O(x^n)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A218679 O.g.f.: Sum_{n>=0} n^n * (1+n*x)^(4*n) * x^n/n! * exp(-n*x*(1+n*x)^4).

Original entry on oeis.org

1, 1, 5, 31, 273, 2652, 30071, 375628, 5135649, 75945388, 1202006514, 20243446719, 360517872287, 6758311053521, 132833835618576, 2728019848249377, 58370987166092073, 1297916560174624569, 29924140267551540116, 713934350929955200551, 17594768127940813003452
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x + 5*x^2 + 31*x^3 + 273*x^4 + 2652*x^5 + 30071*x^6 +...
where
A(x) = 1 + (1+x)^4*x*exp(-x*(1+x)^4) + 2^2*(1+2*x)^8*x^2/2!*exp(-2*x*(1+2*x)^4) + 3^3*(1+3*x)^12*x^3/3!*exp(-3*x*(1+3*x)^4) + 4^4*(1+4*x)^16*x^4/4!*exp(-4*x*(1+4*x)^4) + 5^5*(1+5*x)^20*x^5/5!*exp(-5*x*(1+5*x)^4) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);A=sum(k=0,n,k^k*(1+k*x)^(4*k)*x^k/k!*exp(-k*x*(1+k*x)^4+x*O(x^n)));polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

A245059 a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) * 2^(n-k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.

Original entry on oeis.org

1, 1, 3, 17, 129, 1177, 12463, 149053, 1975473, 28628865, 449059179, 7562334793, 135837896769, 2588529249737, 52093016105575, 1102851978691749, 24480094135644513, 568066476383361793, 13745454515733689427, 346020796943921077057, 9043636093339718229697, 244954584886648170627641
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2014

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 129*x^4 + 1177*x^5 + 12463*x^6 +...
where
A(x) = 1 + x/(1-2*x)*exp(-x/(1-2*x)) + 2^2*x^2/(1-4*x)^2*exp(-2*x/(1-4*x))/2! + 3^3*x^3/(1-6*x)^3*exp(-3*x/(1-6*x))/3! + 4^4*x^4/(1-8*x)^4*exp(-4*x/(1-8*x))/4! +...
simplifies to a power series in x with integer coefficients.
Illustrate the definition of the terms by:
a(2) = 1*1*2 + 1*1 = 3;
a(3) = 1*1*2^2 + 2*3*2 + 1*1 = 17;
a(4) = 1*1*2^3 + 3*7*2^2 + 3*6*2 + 1*1 = 129;
a(5) = 1*1*2^4 + 4*15*2^3 + 6*25*2^2 + 4*10*2 + 1*1 = 1177;
a(6) = 1*1*2^5 + 5*31*2^4 + 10*90*2^3 + 10*65*2^2 + 5*15*2 + 1*1 = 12463; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)*2^(n-k)))}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n+1, (k*x)^k/(1-2*k*x)^k*exp(-k*x/(1-2*k*x+x*O(x^n)))/k!), n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=0} (n*x)^n/(1-2*n*x)^n * exp(-n*x/(1-2*n*x)) / n!.

A245060 a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) * 3^(n-k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.

Original entry on oeis.org

1, 1, 4, 28, 271, 3172, 43174, 666577, 11445214, 215478712, 4401799930, 96757165012, 2273105615356, 56755763435503, 1499039156935948, 41714498328290992, 1218787798107634291, 37275555462806318512, 1190200470204107432854, 39581409916012393962280, 1368112674516484881342244
Offset: 0

Views

Author

Paul D. Hanna, Jul 10 2014

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 271*x^4 + 3172*x^5 + 43174*x^6 +...
where
A(x) = 1 + x/(1-3*x)*exp(-x/(1-3*x)) + 2^2*x^2/(1-6*x)^2*exp(-2*x/(1-6*x))/2! + 3^3*x^3/(1-9*x)^3*exp(-3*x/(1-9*x))/3! + 4^4*x^4/(1-12*x)^4*exp(-4*x/(1-12*x))/4! +...
simplifies to a power series in x with integer coefficients.
Illustrate the definition of the terms by:
a(2) = 1*1*3 + 1*1 = 4;
a(3) = 1*1*3^2 + 2*3*3 + 1*1 = 28;
a(4) = 1*1*3^3 + 3*7*3^2 + 3*6*3 + 1*1 = 271;
a(5) = 1*1*3^4 + 4*15*3^3 + 6*25*3^2 + 4*10*3 + 1*1 = 3172;
a(6) = 1*1*3^5 + 5*31*3^4 + 10*90*3^3 + 10*65*3^2 + 5*15*3 + 1*1 = 43174; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0, 1, sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)*3^(n-k)))}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n+1, (k*x)^k/(1-3*k*x)^k*exp(-k*x/(1-3*k*x+x*O(x^n)))/k!), n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

O.g.f.: Sum_{n>=0} (n*x)^n/(1-3*n*x)^n * exp(-n*x/(1-3*n*x)) / n!.

A218671 O.g.f.: Sum_{n>=0} n^(2*n) * (1+n*x)^n * x^n/n! * exp(-n^2*x*(1+n*x)).

Original entry on oeis.org

1, 1, 8, 120, 2635, 76503, 2764957, 119634152, 6030195490, 347037131298, 22453144758980, 1613322276606404, 127466755375275614, 10983423290600347408, 1025046637630590359928, 103004615955568528609200, 11088429267977228122393005, 1273093489376335864500416685
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).

Examples

			O.g.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 2635*x^4 + 76503*x^5 +...
where
A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^4*(1+2*x)^2*x^2/2!*exp(-2^2*x*(1+2*x)) + 3^6*(1+3*x)^3*x^3/3!*exp(-3^2*x*(1+3*x)) + 4^8*(1+4*x)^4*x^4/4!*exp(-4^2*x*(1+4*x)) + 5^10*(1+5*x)^5*x^5/5!*exp(-5^2*x*(1+5*x)) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)= my(A=sum(k=0, n, k^(2*k)*(1+k*x)^k*x^k/k!*exp(-k^2*x*(1+k*x)+x*O(x^n)))); polcoef(A, n)}
    for(n=0,30,print1(a(n),", "))

A218824 O.g.f.: A(x) = Sum_{n>=0} n^n * x^n/n! * P(n*x)^n * exp(-n*x*P(n*x)), where P(x) is the partition function (A000041).

Original entry on oeis.org

1, 1, 2, 9, 57, 421, 3593, 34557, 366832, 4251094, 53238166, 714702779, 10221402872, 154913725486, 2477047085038, 41629752595369, 732956458329580, 13480858878123068, 258362762534442843, 5148079352377053578, 106437899659055825010, 2279307634231962670724
Offset: 0

Views

Author

Paul D. Hanna, Nov 06 2012

Keywords

Comments

Compare the o.g.f. to the LambertW identity:
Sum_{n>=0} n^n * x^n/n! * G(x)^n * exp(-n*x*G(x)) = 1/(1-x*G(x)).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 57*x^4 + 421*x^5 + 3593*x^6 +...
such that
A(x) = 1 + x*P(x)*exp(-x*P(x)) + 2^2*x^2*P(2*x)^2*exp(-2*x*P(2*x))/2! + 3^3*x^3*P(3*x)^3*exp(-3*x*P(3*x))/3! + 4^4*x^4*P(4*x)^4*exp(-4*x*P(4*x))/4! + 5^5*x^5*P(5*x)^5*exp(-5*x*P(5*x))/5! +...
where the partition function P(x) = Product_{n>=1} 1/(1-x^n) begins:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 +...
		

Crossrefs

Cf. A218670.

Programs

  • PARI
    {a(n)=local(A=1+x);A=sum(k=0,n,k^k/eta(k*x+x*O(x^n))^k*x^k/k!*exp(-k*x/eta(k*x+x*O(x^n))));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
Previous Showing 11-16 of 16 results.