cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A361638 Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^2 * (1 + A(x)^3).

Original entry on oeis.org

1, 2, 14, 142, 1690, 21994, 303126, 4348102, 64235570, 970695442, 14934154334, 233133082494, 3683546302538, 58794776161274, 946619511627622, 15355445768326710, 250717346336174690, 4117189670041072930, 67956239699290313646, 1126763233375565370990
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(2*n+3*k+1, n)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(2*n+3*k+1,n)/(2*n+3*k+1).

A371657 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x) + A(x)^2).

Original entry on oeis.org

1, 3, 27, 333, 4752, 73764, 1209492, 20610693, 361403937, 6478386561, 118181952369, 2186908154748, 40949739595242, 774474351098031, 14772979729013247, 283878381945510621, 5490264493926636912, 106786725176131118523, 2087502569999563971843
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0.

A378155 G.f. A(x) satisfies A(x) = ( 1 + x * A(x)^(2/3) * (1 + A(x)^(2/3)) )^3.

Original entry on oeis.org

1, 6, 48, 452, 4680, 51504, 591312, 7002864, 84926304, 1049402944, 13165069824, 167239042176, 2146912312064, 27808372643328, 362981425115904, 4769884412086016, 63050983340533248, 837805424714425344, 11184489029495865344, 149935005483457542144, 2017560365768892739584
Offset: 0

Views

Author

Seiichi Manyama, Nov 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, t=2, u=2) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));

Formula

G.f.: B(x)^3 where B(x) is the g.f. of A219534.
a(n) = 3 * Sum_{k=0..n} binomial(n,k) * binomial(2*n+2*k+3,n)/(2*n+2*k+3).

A378156 G.f. A(x) satisfies A(x) = ( 1 + x * A(x)^(1/2) * (1 + A(x)^(1/2)) )^4.

Original entry on oeis.org

1, 8, 72, 720, 7728, 87104, 1017184, 12200640, 149429504, 1861059328, 23498407680, 300110580224, 3870135336192, 50323754919936, 659085377250816, 8686436702866432, 115120162870534144, 1533214282017157120, 20510220228874399744, 275462154992599851008, 3712900128220039372800
Offset: 0

Views

Author

Seiichi Manyama, Nov 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=4, t=2, u=2) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));

Formula

G.f.: B(x)^4 where B(x) is the g.f. of A219534.
a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(2*n+2*k+4,n)/(n+k+2).
Previous Showing 11-14 of 14 results.