cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A348957 G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).

Original entry on oeis.org

1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
    CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)

Formula

a(0) = 1; a(n) = -(-1)^n * a(n-1) + Sum_{k=0..n-1} a(k) * a(n-k-1).
a(n) ~ c * 3^(3*n/4) * (1 + sqrt(3))^n / (sqrt(2*Pi) * n^(3/2) * 2^(n/2)), where c = 3^(1/4) if n is even and c = (1 + sqrt(3))/sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 14 2021
From Alexander Burstein, Nov 26 2021: (Start)
G.f.: A(-x) = 1/A(x).
G.f.: A(x) = 1 + x*(1+A(x)^3)/A(x). (End)
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-3*k-2,n-1) for n > 0. - Seiichi Manyama, Apr 11 2024

A379251 G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^2) )^2.

Original entry on oeis.org

1, 4, 32, 340, 4144, 54724, 761712, 11004500, 163453472, 2480507524, 38292849280, 599455647828, 9493724671184, 151835354054212, 2448792546337360, 39781755539153748, 650386418008379200, 10692713526634029316, 176669496568313495520, 2931998993134971532116, 48854054306918652620912
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+2*k+2, n-k)/(n+k+1));

Formula

G.f.: B(x)^2 where B(x) is the g.f. of A361638.
a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+2*k+2,n-k)/(n+k+1).

A379253 G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x)^5).

Original entry on oeis.org

1, 2, 18, 250, 4114, 74274, 1422370, 28375578, 583343970, 12271614850, 262896435954, 5715805729274, 125797580340978, 2797216275743010, 62745424152317314, 1418139209556260250, 32263795396317233090, 738290052194219833346, 16981168956515987563730
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2024

Keywords

Crossrefs

Cf. A361638.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(2*n+5*k+1, n)/(2*n+5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(2*n+5*k+1,n)/(2*n+5*k+1).
Showing 1-3 of 3 results.