cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A219561 Number of 4-partite partitions of (n,n,n,n) into distinct quadruples.

Original entry on oeis.org

1, 15, 457, 14595, 407287, 10200931, 233051939, 4909342744, 96272310302, 1771597038279, 30795582025352, 508466832109216, 8011287089600483, 120926718707154007, 1754672912487450236, 24547188914867491083, 331937179344717327559, 4348524173437743243649, 55300773426746984710983
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r*s)^n into distinct factors where p, q, r, s are distinct primes.

Examples

			a(0) = 1: [].
a(1) = 15: [(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)], [(0,0,1,1),(1,0,0,0),(0,1,0,0)], [(0,1,0,1),(1,0,0,0),(0,0,1,0)], [(0,1,1,0),(1,0,0,0),(0,0,0,1)], [(1,0,0,1),(0,1,0,0),(0,0,1,0)], [(1,0,0,1),(0,1,1,0)], [(1,0,1,0),(0,1,0,0),(0,0,0,1)], [(1,0,1,0),(0,1,0,1)], [(1,1,0,0),(0,0,1,0),(0,0,0,1)], [(1,1,0,0),(0,0,1,1)], [(0,1,1,1),(1,0,0,0)], [(1,0,1,1),(0,1,0,0)], [(1,1,0,1),(0,0,1,0)], [(1,1,1,0),(0,0,0,1)], [(1,1,1,1)].
		

Crossrefs

Column k=4 of A219585.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (1/2) Coefficient[Product[O[w]^(n+1) + O[x]^(n+1) + O[y]^(n+1) + O[z]^(n+1) + (1 + w^i x^j y^k z^m), {i, 0, n}, {j, 0, n}, {k, 0, n}, {m, 0, n}] // Normal, (w x y z)^n]];
    Table[Print[n]; a[n], {n, 0, 12}] (* Jean-François Alcover, Sep 16 2019 *)

Formula

a(n) = [(w*x*y*z)^n] 1/2 * Product_{i,j,k,m>=0} (1+w^i*x^j*y^k*z^m).

Extensions

a(9) from Alois P. Heinz, Oct 15 2014
a(10)-a(18) from Andrew Howroyd, Dec 17 2018

A219565 Number of 5-partite partitions of (n,n,n,n,n) into distinct quintuples.

Original entry on oeis.org

1, 52, 6995, 937776, 107652681, 10781201973, 958919976957, 76861542428397, 5620227129073491, 378709513816248475, 23713852762539359688, 1389561695379881634055, 76647024053735036288641, 3999799865715906390697377, 198328846122797866982616805, 9379277765981012067789260214
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

Number of factorizations of (p*q*r*s*t)^n into distinct factors where p, q, r, s, t are distinct primes.

Crossrefs

Column k=5 of A219585.

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, (1/2) Coefficient[Product[O[v]^(n+1) + O[w]^(n+1) + O[x]^(n+1) + O[y]^(n+1) + O[z]^(n+1) + (1 + v^i w^j x^k y^l z^m), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}, {m, 0, n}] // Normal, (v w x y z)^n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 7}] (* Jean-François Alcover, Sep 24 2019 *)

Formula

a(n) = [(v*w*x*y*z)^n] 1/2 * Product_{h,i,j,k,m>=0} (1+v^h*w^i*x^j*y^k*z^m).

Extensions

a(6) from Alois P. Heinz, Sep 25 2014
a(7)-a(15) from Andrew Howroyd, Dec 16 2018

A319591 Number of nonnegative integer matrices with n columns and any number of nonzero distinct rows with every column summing to 3 up to permutation of rows.

Original entry on oeis.org

1, 2, 17, 364, 14595, 937776, 88507276, 11584785137, 2017129470049, 452573312572094, 127585778625167901, 44275881599081757633, 18594652294164085489646, 9315786786179883210141889, 5499383628157822564248546214, 3784760890972848935690646794792
Offset: 0

Views

Author

Andrew Howroyd, Dec 16 2018

Keywords

Comments

Also, the number of factorizations of m^3 into distinct factors where m is a product of n distinct primes.

Crossrefs

Row n=3 of A219585.
Cf. A322487.
Previous Showing 11-13 of 13 results.