cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A219862 Number of tilings of a 4 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 1, 7, 41, 184, 1069, 5624, 29907, 161800, 862953, 4631107, 24832532, 133028028, 713283085, 3822965706, 20491221900, 109840081931, 588746006676, 3155783700063, 16915482096570, 90669231898345, 486001022349368, 2605035346917456, 13963368769216664
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2012

Keywords

Examples

			a(2) = 7, because there are 7 tilings of a 4 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___.   .___.   .___.   .___.   .___.   .___.   .___.
| | |   |___|   |___|   | | |   |___|   |___|   | | |
| | |   | | |   |___|   |_|_|   | | |   |___|   |_|_|
|_|_|   | | |   |___|   |___|   |_|_|   | | |   | | |
|___|   |_|_|   |___|   |___|   |___|   |_|_|   |_|_|
		

Crossrefs

Column k=4 of A219866.

Programs

  • Maple
    gf:= -(x^42 +x^41 -4*x^40 +4*x^38 -41*x^37 +16*x^36 +45*x^35 +67*x^34 -166*x^33 +282*x^32 -148*x^31 +155*x^30 -405*x^29 +995*x^28 -1118*x^27 +575*x^26 -1863*x^25 +402*x^24 -3552*x^23 +2577*x^22 -406*x^21 +5797*x^20 -741*x^19 +3045*x^18 -5606*x^17 +223*x^16 -4294*x^15 +2924*x^14 -753*x^13 +3011*x^12 -1029*x^11 +811*x^10 -1205*x^9 +248*x^8 -310*x^7 +229*x^6 -17*x^5 +53*x^4 -20*x^3 -3*x^2 -3*x +1) /
    (x^45 -x^43 -3*x^42 +13*x^41 -58*x^40 +10*x^39 -32*x^38 +88*x^37 -278*x^36 +734*x^35 +32*x^34 +1108*x^33 -657*x^32 +1842*x^31 -4783*x^30 -680*x^29 -7786*x^28 +1924*x^27 -6435*x^26 +15731*x^25 +1875*x^24 +19846*x^23 -9300*x^22 +5040*x^21 -27627*x^20 +3863*x^19 -15477*x^18 +18628*x^17 -2769*x^16 +16066*x^15 -8873*x^14 +4310*x^13 -8602*x^12 +2523*x^11 -2657*x^10 +2838*x^9 -644*x^8 +797*x^7 -395*x^6 +17*x^5 -102*x^4 +27*x^3 +6*x^2 +4*x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..30);

Formula

G.f.: see Maple program.

A219868 Number of tilings of a 5 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 2, 15, 143, 1069, 9612, 82634, 707903, 6155230, 53074167, 458901955, 3968548571, 34293794622, 296497719200, 2563023778341, 22155553744380, 191528023181443, 1655649630655481, 14312296720331975, 123722938782920490, 1069522524403416934, 9245501816227527991
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(2) = 15, because there are 15 tilings of a 5 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.
| | |  |___|  | | |  |___|  | | |  |___|  | | |  |___|
| | |  |___|  |_|_|  | | |  | | |  |___|  |_|_|  | | |
|_|_|  |___|  |___|  |_|_|  |_|_|  |___|  |___|  |_|_|
| | |  | | |  | | |  | | |  |___|  |___|  |___|  |___|
|_|_|  |_|_|  |_|_|  |_|_|  |___|  |___|  |___|  |___|
.___.  .___.  .___.  .___.  ._._.  ._._.  .___.
| | |  | | |  |___|  |___|  | | |  | | |  |___|
|_|_|  |_|_|  |___|  |___|  |_| |  | |_|  | | |
| | |  | | |  | | |  | | |  | |_|  |_| |  | | |
| | |  |_|_|  | | |  |_|_|  | | |  | | |  |_|_|
|_|_|  |___|  |_|_|  |___|  |_|_|  |_|_|  |___|
		

Crossrefs

Column k=5 of A219866.

A219869 Number of tilings of a 6 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 2, 30, 472, 5624, 82634, 1143834, 15859323, 223026907, 3105936858, 43427618185, 606962113407, 8477372675760, 118475405895601, 1655302050975409, 23128348583334118, 323168394713538001, 4515400902297318144, 63091618970759626487, 881547198837947075202
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(1) = 2, because there are 2 tilings of a 6 X 1 rectangle using dominoes and straight (3 X 1) trominoes:
._.    ._.
| |    | |
| |    |_|
|_|    | |
| |    |_|
| |    | |
|_|    |_|
		

Crossrefs

Column k=6 of A219866.

A219870 Number of tilings of a 7 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 3, 60, 1562, 29907, 707903, 15859323, 354859954, 8061851335, 181382499259, 4095897476480, 92476840837163, 2086314577400136, 47096964973772265, 1062921614745008697, 23989328157229264043, 541446343762904191567, 12220135872229640539724
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(1) = 3, because there are 3 tilings of a 7 X 1 rectangle using dominoes and straight (3 X 1) trominoes:
._.    ._.    ._.
| |    | |    | |
| |    |_|    |_|
|_|    | |    | |
| |    | |    |_|
|_|    |_|    | |
| |    | |    | |
|_|    |_|    |_|
		

Crossrefs

Column k=7 of A219866.

A219871 Number of tilings of an 8 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 4, 123, 5233, 161800, 6155230, 223026907, 8061851335, 295743829064, 10750194262698, 392127322268846, 14301080443962397, 521186161714401053, 19005127884701974465, 692863015545590519355, 25260000472133325186613, 920954865421382858310101
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(1) = 4, because there are 4 tilings of an 8 X 1 rectangle using dominoes and straight (3 X 1) trominoes:
._.    ._.    ._.    ._.
| |    | |    | |    | |
| |    | |    |_|    |_|
|_|    |_|    | |    | |
| |    | |    | |    |_|
| |    |_|    |_|    | |
|_|    | |    | |    |_|
| |    | |    | |    | |
|_|    |_|    |_|    |_|
		

Crossrefs

Column k=8 of A219866.

A219872 Number of tilings of a 9 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 5, 249, 17395, 862953, 53074167, 3105936858, 181382499259, 10750194262698, 631206895803116, 37197513508819191, 2191568660367709311, 129026759279686110418, 7600920859497795763717, 447657086066162084823497, 26365510156948695071183306
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(1) = 5, because there are 5 tilings of a 9 X 1 rectangle using dominoes and straight (3 X 1) trominoes:
._.    ._.    ._.    ._.    ._.
| |    | |    | |    | |    | |
| |    |_|    |_|    |_|    | |
|_|    | |    | |    | |    |_|
| |    |_|    |_|    | |    | |
| |    | |    | |    |_|    |_|
|_|    |_|    | |    | |    | |
| |    | |    |_|    |_|    |_|
| |    | |    | |    | |    | |
|_|    |_|    |_|    |_|    |_|
		

Crossrefs

Column k=9 of A219866.

A219873 Number of tilings of a 10 X n rectangle using dominoes and straight (3 X 1) trominoes.

Original entry on oeis.org

1, 7, 506, 58002, 4631107, 458901955, 43427618185, 4095897476480, 392127322268846, 37197513508819191, 3541054185616706122, 337034306456285944790, 32054951461147041813900, 3050527403495695959369072, 290235791993563362905189432, 27614468898770593799634611889
Offset: 0

Views

Author

Alois P. Heinz, Nov 30 2012

Keywords

Examples

			a(1) = 7, because there are 7 tilings of a 10 X 1 rectangle using dominoes and straight (3 X 1) trominoes:
._.    ._.    ._.    ._.    ._.    ._.    ._.
| |    | |    | |    | |    | |    | |    | |
|_|    |_|    |_|    |_|    | |    | |    | |
| |    | |    | |    | |    |_|    |_|    |_|
|_|    |_|    | |    | |    | |    | |    | |
| |    | |    |_|    |_|    |_|    |_|    | |
|_|    | |    | |    | |    | |    | |    |_|
| |    |_|    |_|    | |    |_|    | |    | |
|_|    | |    | |    |_|    | |    |_|    |_|
| |    | |    | |    | |    | |    | |    | |
|_|    |_|    |_|    |_|    |_|    |_|    |_|
		

Crossrefs

Column k=10 of A219866.

A278815 Number of tilings of a 2 X n grid with monomers, dimers, and trimers.

Original entry on oeis.org

1, 2, 7, 29, 109, 416, 1596, 6105, 23362, 89415, 342193, 1309593, 5011920, 19180976, 73406985, 280933906, 1075154535, 4114694797, 15747237101, 60265824784, 230641706484, 882682631025, 3378090801226, 12928199853783, 49477163668857, 189352713633433
Offset: 0

Views

Author

Kathryn Haymaker, Nov 28 2016

Keywords

Comments

The first three terms are the same as A030186 because there are only monomers and dimers in boards with n<3.

Crossrefs

Programs

  • GAP
    a:=[1,2,7,29,109,416];; for n in [7..30] do a[n]:=3*a[n-1]+2*a[n-2] +5*a[n-3]-2*a[n-4]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(coeff(series((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019
  • Mathematica
    LinearRecurrence[{3,2,5,-2,0,-1}, {1,2,7,29,109,416}, 30] (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+ 2*x^4 +x^6)) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A278815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) ).list()
    A278815_list(30) # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = 3*a(n-1) + 2*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-6).
G.f.: (1 - x - x^2 - x^3)/(1 - 3*x - 2*x^2 - 5*x^3 + 2*x^4 + x^6).
Previous Showing 11-18 of 18 results.