cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A243809 G.f.: exp( Integral Sum_{n>=1} n!*n^n*x^(n-1) / Product_{k=1..n} (1+k*n*x) dx ).

Original entry on oeis.org

1, 1, 4, 42, 909, 33969, 1948514, 158770640, 17419561466, 2474812055850, 441910422152592, 96867456432497772, 25572186966552515130, 8002470602289313981938, 2929213328377453597523820, 1239933908245021946285387592, 601020049737946926794959094457
Offset: 0

Views

Author

Paul D. Hanna, Jun 11 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 42*x^3 + 909*x^4 + 33969*x^5 + 1948514*x^6 +...
where the logarithmic derivative is given by the series:
A'(x)/A(x) = 1/(1+x) + 2!*2^2*x/((1+1*2*x)*(1+2*2*x)) + 3!*3^3*x^2/((1+1*3*x)*(1+2*3*x)*(1+3*3*x)) + 4!*4^4*x^3/((1+1*4*x)*(1+2*4*x)*(1+3*4*x)*(1+4*4*x)) + 5!*5^5*x^4/((1+1*5*x)*(1+2*5*x)*(1+3*5*x)*(1+4*5*x)*(1+5*5*x)) +...
Explicitly,
A'(x)/A(x) = 1 + 7*x + 115*x^2 + 3451*x^3 + 164731*x^4 + 11467387*x^5 +...+ A220181(n+1)*x^n +...
compare to:
G(x) = x + 7*x^2/2! + 115*x^3/3! + 3451*x^4/4! + 164731*x^5/5! + 11467387*x^6/6! +...+ A220181(n)*x^n/n! +...
where G(x) = (1-exp(-x)) + (1-exp(-2*x))^2 + (1-exp(-3*x))^3 + (1-exp(-4*x))^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); A=exp(intformal(sum(m=1, n+1, m^m*m!*x^(m-1)/prod(k=1, m, 1+m*k*x +x*O(x^n))))); polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From g.f. exp( Sum_{n>=1} A220181(n)*x^n/n ): */
    {A220181(n)=n!*polcoeff(sum(k=0, n, (1-exp(-k*x+x*O(x^n)))^k), n)}
    {a(n)=polcoeff(exp(sum(m=1,n,A220181(m)*x^m/m) +x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} A220181(n)*x^n/n ) where Sum_{n>=1} A220181(n)*x^n/n! = Sum_{n>=1} (1 - exp(-n*x))^n.

A201007 G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n / Product_{k=1..n} (1 + n*k*x).

Original entry on oeis.org

1, 1, 2, 12, 162, 4020, 161190, 9580200, 794045490, 87732586200, 12482467492950, 2225389826721600, 486286707998356650, 127896148968309802080, 39873063650831725704390, 14545617596016448962820800, 6140116931023810866657175650, 2970359726329509983655533867520
Offset: 0

Views

Author

Paul D. Hanna, Jan 08 2013

Keywords

Comments

Compare to a g.f. involving the factorial numbers:
1/(1-x) = Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + k*x).
Also compare to a g.f. of A220181:
Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 + n*k*x).

Examples

			1/(1-x) = 1 + x/(1+x) + 2*x^2/((1+2*1*x)*(1+2*2*x)) + 12*x^3/((1+3*1*x)*(1+3*2*x)*(1+3*3*x)) + 162*x^4/((1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)) + 4020*x^5/((1+5*1*x)*(1+5*2*x)*(1+5*3*x)*(1+5*4*x)*(1+5*5*x)) +...
		

Programs

  • PARI
    {a(n)=if(n==0, 1, 1-polcoeff(sum(k=0, n-1, a(k)*x^k/prod(j=1, k, 1+k*j*x+x*O(x^n))), n))}
    for(n=0, 20, print1(a(n), ", "))

A347940 Array T(n, k) = Sum_{j=2..n+2} (-1)^(n-j)*Stirling2(n+1, j-1)*j!*j^k/2, for n and k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 4, 7, 4, 8, 23, 23, 8, 16, 73, 115, 73, 16, 32, 227, 533, 533, 227, 32, 64, 697, 2359, 3451, 2359, 697, 64, 128, 2123, 10133, 20753, 20753, 10133, 2123, 128, 256, 6433, 42655, 118843, 164731, 118843, 42655, 6433, 256, 512, 19427, 177053, 657833, 1220657, 1220657, 657833, 177053, 19427, 512
Offset: 0

Views

Author

Michel Marcus, Sep 20 2021

Keywords

Comments

T(m, n) is the number of saturated Cp^m*q^n-transfer systems where Cp^m*q^n is the cyclic group of order p^m*q^n, for m, n >= 0, p and q primes. See Hafeez et al. link page 1.

Examples

			Array begins:
   1   2     4      8      16       32 ...
   2   7    23     73     227      697 ...
   4  23   115    533    2359    10133 ...
   8  73   533   3451   20753   118843 ...
  16 227  2359  20753  164731  1220657 ...
  32 697 10133 118843 1220657 11467387 ...
  ...
		

Crossrefs

Columns k=0-1 gives A000079, A083313(n+1).
Main diagonal gives A220181(n+1).
Cf. A008277 (Stirling2), A143494.

Programs

  • PARI
    T(n, k) = sum(j=2, n+2, (-1)^(n-j)*stirling(n+1, j-1, 2)*j!*j^k/2);

Formula

T(n,k) = T(k,n).
T(n,k) = Sum_{j=0..min(n,k)} (j!*(j+2)!/2)*Stirling2(n+2,j+2;2)*Stirling2(k+2,j+2;2), n,k >= 0, where Stirling2(n,k;2) are the 2-Stirling numbers of the second kind A143494. - Fabián Pereyra, Jan 08 2022
Previous Showing 31-33 of 33 results.