cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A223527 Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 5, 4, 45, 72, 16, 585, 1404, 624, 64, 9945, 31824, 21216, 4352, 256, 208845, 835380, 742560, 228480, 26880, 1024, 5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096, 151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
5, 4;
45, 72, 16;
585, 1404, 624, 64;
9945, 31824, 21216, 4352, 256;
208845, 835380, 742560, 228480, 26880, 1024;
5221125, 25061400, 27846000, 11424000, 2016000, 153600, 4096;
151412625, 847910700, 1130547600, 579768000, 136416000, 15590400, 831488, 16384;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;

A223528 Triangle S(n,k) by rows: coefficients of 4^(n/2)*(x^(3/4)*d/dx)^n when n=0,2,4,6,...

Original entry on oeis.org

1, 1, 4, 5, 40, 16, 45, 540, 432, 64, 585, 9360, 11232, 3328, 256, 9945, 198900, 318240, 141440, 21760, 1024, 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096, 5221125, 146191500, 350859600, 259896000, 79968000, 11289600, 716800, 16384, 151412625
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
1, 4;
5, 40, 16;
45, 540, 432, 64;
585, 9360, 11232, 3328, 256;
9945, 198900, 318240, 141440, 21760, 1024;
208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096;
5221125, 146191500, 350859600, 259896000, 79968000, 11289600, 716800, 16384;
151412625, 4845204000, 13566571200, 12059174400, 4638144000, 873062400, 83148800, 3801088, 65536;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j];
    end do;

A223529 Triangle S(n,k) by rows: coefficients of 5^((n-1)/2)*(x^(1/5)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 6, 5, 66, 110, 25, 1056, 2640, 1200, 125, 22176, 73920, 50400, 10500, 625, 576576, 2402400, 2184000, 682500, 81250, 3125, 17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625, 643458816, 3753509760, 5118422400, 2665845000, 634725000
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
6, 5;
66, 110, 25;
1056, 2640, 1200, 125;
22176, 73920, 50400, 10500, 625;
576576, 2402400, 2184000, 682500, 81250, 3125;
17873856, 89369280, 101556000, 42315000, 7556250, 581250, 15625;
643458816, 3753509760, 5118422400, 2665845000, 634725000, 73237500, 3937500, 78125;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(5^((i+1)mod 2)*x^((3((i+1)mod 2)+1)/5)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;

A223530 Triangle S(n,k) by rows: coefficients of 5^(n/2)*(x^(4/5)*d/dx)^n when n=0,2,4,6,...

Original entry on oeis.org

1, 1, 5, 6, 60, 25, 66, 990, 825, 125, 1056, 21120, 26400, 8000, 625, 22176, 554400, 924000, 420000, 65625, 3125, 576576, 17297280, 36036000, 21840000, 5118750, 487500, 15625, 17873856, 625584960, 1563962400, 1184820000, 370256250, 52893750, 3390625, 78125
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
1, 5;
6, 60, 25;
66, 990, 825, 125;
1056, 21120, 26400, 8000, 625;
22176, 554400, 924000, 420000, 65625, 3125;
576576, 17297280, 36036000, 21840000, 5118750, 487500, 15625;
17873856, 625584960, 1563962400, 1184820000, 370256250, 52893750, 3390625, 78125;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(5^((i+1)mod 2)*x^((3((i+1)mod 2)+1)/5)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j];
    end do;

A223531 Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n=1,3,5,...

Original entry on oeis.org

1, 7, 6, 91, 156, 36, 1729, 4446, 2052, 216, 43225, 148200, 102600, 21600, 1296, 1339975, 5742750, 5301000, 1674000, 200880, 7776, 49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656, 2131900225, 12791401350, 17711171100, 9321669000
Offset: 1

Views

Author

Udita Katugampola, Mar 23 2013

Keywords

Examples

			Triangle begins:
1;
7, 6;
91, 156, 36;
1729, 4446, 2052, 216;
43225, 148200, 102600, 21600, 1296;
1339975, 5742750, 5301000, 1674000, 200880, 7776;
49579075, 254978100, 294205500, 123876000, 22297680, 1726272, 46656;
2131900225, 12791401350, 17711171100, 9321669000, 2237200560, 259803936, 14043456, 279936;
		

Crossrefs

Programs

  • Maple
    a[0]:= f(x):
    for i from 1 to 20 do
    a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 )));
    end do:
    for j from 1 to 10 do
    b[j]:=a[2j-1];
    end do;
Previous Showing 21-25 of 25 results.