cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A359344 Largest pandigital square with n digits.

Original entry on oeis.org

9814072356, 99853472016, 998732401956, 9998490637521, 99992580137641, 999984024130576, 9999925800137641, 99999987340240516, 999999258000137641, 9999999562540763281, 99999992580000137641, 999999991102375684521, 9999999925800000137641, 99999999986188478340025
Offset: 10

Views

Author

Martin Renner, Dec 27 2022

Keywords

Comments

Pandigital squares are perfect squares containing each digit from 0 to 9 at least once.
For number of digits n >= 14, every second term is of the form 9...92580...0137641 with n/2 - 3 leading nines and n/2 - 6 zeros after the middle three digits 258. This term is 9...9629^2 with n/2 - 3 leading nines. This is the case since ((10^m - 1)*10^3 + 629)^2 = 10^(2*m+6) - 2*10^(m+6) + 10^(m+6) + 258*10^(m+3) + 10^6 - 1258*10^3 + 395641 = (10^m - 1)*10^(m+6) + 258*10^(m+3) + 137641 with m = (n-6)/2 and n >= 14 even, and is the last n-digit square containing all digits from 0 to 9.

Crossrefs

Programs

  • Maple
    a:=proc(n::posint) local s, k, K: if n<10 then s:=NULL: else for k from floor(sqrt(10^n)) to ceil(sqrt(10^(n-1))) by -1 do K:=convert(k^2,base,10); if nops({op(K)})=10 then s:=k^2: break: fi: od: fi: return s; end:
    seq(a(n),n=10..30);
  • Python
    from math import isqrt
    def c(n): return len(set(str(n))) == 10
    def a(n):
        ub, lb = isqrt(10**n-1), isqrt(10**(n-1)) if n&1 else isqrt(10**(n-1))+1
        return next((k*k for k in range(ub, lb-1, -1) if c(k*k)), None)
    print([a(n) for n in range(10, 24)]) # Michael S. Branicky, Dec 27 2022

Formula

a(n) = (10^(n/2-3)-1)*10^(n/2+3) + 258*10^(n/2) + 137641 for n >= 14 even.

A359346 Reversible pandigital square numbers.

Original entry on oeis.org

1234549876609, 9066789454321, 123452587690084, 123454387666009, 123454987660900, 123456987654400, 123458987664100, 123478988652100, 125688987432100, 146678985432100, 445678965432100, 480096785254321, 900666783454321, 906678945432100, 10223418547690084
Offset: 1

Views

Author

Martin Renner, Dec 27 2022

Keywords

Comments

These are perfect squares containing each digit from 0 to 9 at least once and still remain square numbers (not necessarily of the same length) when reversing the digits.
In 1905, inspired by a question about all pandigital square numbers containing each digit from 0 to 9 exactly once (cf. A036745, A156977), the British mathematician Allan Cunningham (1842-1928) asked for reversible and palindromic pandigital square numbers. In his answer, he gives possible solutions, but actually not the least possible numbers he was asking for in his question.

Examples

			Sequence starts with 1111103^2 = 1234549876609 <~> 9066789454321 = 3011111^2, which is the smallest possible such number.
		

Crossrefs

Programs

  • PARI
    isok(k) = if (issquare(k), my(d=digits(k)); (#Set(d) == 10) && issquare(fromdigits(Vecrev(d)));); \\ Michel Marcus, Dec 31 2022
  • Python
    from math import isqrt
    from itertools import count, islice
    def c(n): return len(set(s:=str(n)))==10 and isqrt(r:=int(s[::-1]))**2==r
    def agen(): yield from (k*k for k in count(10**6) if c(k*k))
    print(list(islice(agen(), 15))) # Michael S. Branicky, Dec 27 2022
    

A359341 Number of pandigital squares with n digits.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 504, 4275, 29433, 179235, 955818, 4653802, 21034628, 89834238, 366490378, 1440743933, 5493453262
Offset: 1

Views

Author

Martin Renner, Dec 27 2022

Keywords

Comments

Pandigital squares are perfect squares containing each digit from 0 to 9 at least once.

Examples

			a(n) = 0 for n < 10, since a number must have at least ten digits to contain all digits from 0 to 9 at least once.
a(10) = 87 since there are 87 ten-digit pandigital squares from 1026753849 to 9814072356 (cf. A036745) containing each digit from 0 to 9, here exactly once.
		

Crossrefs

Programs

  • Maple
    a:=proc(n::posint) local p,k,K: if n<10 then p:=0; else p:=0: for k from ceil(sqrt(10^(n-1))) to floor(sqrt(10^n)) do K:=convert(k^2,base,10); if nops({op(K)})=10 then p:=p+1: fi: od: fi: return p; end:
  • Python
    from math import isqrt
    def c(n): return len(set(str(n))) == 10
    def a(n):
        lb = isqrt(10**(n-1)) if n&1 else isqrt(10**(n-1)) + 1
        return sum(1 for k in range(lb, isqrt(10**n-1)+1) if c(k*k))
    print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Dec 27 2022

Extensions

a(19)-a(21) from Michael S. Branicky, Dec 27 2022
Previous Showing 11-13 of 13 results.