cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A383222 Coefficient of x^4 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).

Original entry on oeis.org

0, 0, 0, 0, 1, 40, 1275, 39655, 1276009, 43382934, 1570298610, 60630265740, 2495678898636, 109326548645600, 5085420626585936, 250576924194171120, 13046999027750243984, 716156618057417103008, 41347880768363832470304, 2505655766070932929630464
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2025

Keywords

Crossrefs

Column k=4 of A225470.

Programs

  • PARI
    a(n) = polcoef(prod(k=0, n-1, x+3*k+2), 4);
    
  • PARI
    first(n) = {my(res = vector(n), v = [1, 0, 0, 0, 0], cv, c = -1, pc = 1); for(i = 2, n, c+=3; pc *= c; cv = v[^5]; cv = concat(0, cv); cv+=v*c; v = cv; res[i] = v[5]); res} \\ David A. Corneth, May 06 2025

Formula

a(n) = Sum_{k=4..n} 2^(k-4) * 3^(n-k) * binomial(k,4) * |Stirling1(n,k)|.
E.g.f.: f(x)^2 * log(f(x))^4 / 24, where f(x) = 1/(1 - 3*x)^(1/3).
a(n) = Sum_{k=4..n} (3*n-1)^(k-4) * 3^(n-k) * binomial(k,4) * Stirling1(n,k). - Seiichi Manyama, May 06 2025

A225474 Triangle read by rows, k!*2^k*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 3, 8, 8, 15, 46, 72, 48, 105, 352, 688, 768, 384, 945, 3378, 7600, 11040, 9600, 3840, 10395, 39048, 97112, 167040, 193920, 138240, 46080, 135135, 528414, 1418648, 2754192, 3857280, 3736320, 2257920, 645120, 2027025, 8196480, 23393376, 49824768, 79892736
Offset: 0

Views

Author

Peter Luschny, May 19 2013

Keywords

Comments

The Stirling-Frobenius cycle numbers are defined in A225470.

Examples

			[n\k][ 0,    1,    2,     3,    4,    5]
[0]    1,
[1]    1,    2,
[2]    3,    8,    8,
[3]   15,   46,   72,    48,
[4]  105,  352,  688,   768,  384,
[5]  945, 3378, 7600, 11040, 9600, 3840.
		

Crossrefs

Programs

  • Mathematica
    SFCSO[n_, k_, m_] := SFCSO[n, k, m] = If[k>n || k<0, 0, If[n == 0 && k == 0, 1, m*k*SFCSO[n-1, k-1, m] + (m*n-1)*SFCSO[n-1, k, m]]]; Table[SFCSO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 05 2014, translated from Sage *)
  • Sage
    @CachedFunction
    def SF_CSO(n, k, m):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return m*k*SF_CSO(n-1, k-1, m) + (m*n-1)*SF_CSO(n-1, k, m)
    for n in (0..8): [SF_CSO(n, k, 2) for k in (0..n)]

Formula

For a recurrence see the Sage program.
T(n, 0) ~ A001147; T(n, n) ~ A000165; T(n, n-1) ~ A014479.
T(n,k) = A028338(n,k) * A000165(k) = A225475(n,k) * A000079(k) = A161198(n,k) * A000142(k). - Philippe Deléham, Jun 25 2015
Previous Showing 11-12 of 12 results.