cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 95 results. Next

A331288 a(n) = min(n, A225546(n)).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 6, 9, 10, 11, 12, 13, 14, 15, 5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 10, 33, 34, 35, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 20, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 15, 65, 66, 67, 68, 69, 70, 71, 54, 73, 74, 75, 76, 77, 78, 79, 80, 25, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2020

Keywords

Comments

For all i, j:
a(i) = a(j) => A331287(i) = A331287(j).

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Min[#, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 96] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A331288(n) = min(n, A225546(n));
    
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A225546(n) = { my(f=factor(n)); for (i=1, #f~, my(p=f[i, 1]); f[i, 1] = A019565(f[i, 2]); f[i, 2] = 2^(primepi(p)-1); ); factorback(f); }; \\ From A225546
    \\ If the following returns 1, then it is certainly true that A225546(p^e) > n (where p^e is one of the divisors of n), thus A225546(n) > n follows:
    is_certainly_gt(p,e,n) = { my(b=A019565(e),j=(primepi(p)-1)); if(b>n,1,if((logint(b,2)*j)>logint(n,2),1,0)); };
    A331288(n) = if((1==n)||isprime(n),n,my(f=factor(n)); for(i=1,#f~,if(is_certainly_gt(f[i,1],f[i,2],n),return(n))); min(n, A225546(n)));

A331734 a(n) = A033879(A225546(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 0, 5, 1, 1, -4, 1, 1, 1, 4, 1, -3, 1, -28, 1, 1, 1, -12, 41, 1, -19, -508, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, -60, 1, 1, 1, -131068, -115, 1, 1, -2, 3281, -39, 1, -8589934588, 1, -51, 1, -1020, 1, 1, 1, -124, 1, 1, -2035, 6, 1, 1, 1, -36893488147419103228, 1, 1, 1, -12, 1, 1, -199, -680564733841876926926749214863536422908
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Crossrefs

Cf. A323244, A323174, A324055, A324185, A324546 for other permutations of the deficiency, and also A324574, A324654.

Programs

  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331734(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); (2*prod(i=1,u,prime(i)^A048675(prods[i]))) - prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1)));

Formula

a(n) = A033879(A225546(n)) = 2*A225546(n) - A331733(n).
For all n, a(A005117(n)) = 1. [It is not known if there are 1's in any other positions. See Jianing Song's Oct 13 2019 comment in A033879.]
For a necessary condition that a(s) would be zero for any square, see A331741.

A331740 Number of prime factors in A225546(n), counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 2, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 4, 4, 33, 4, 9, 512, 7, 1024, 2, 18, 65, 12, 3, 2048, 129, 34, 6, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 5, 20, 10, 130, 513, 65536, 7, 131072, 1025, 10, 2, 36, 19, 262144, 65, 258, 13, 524288, 4, 1048576, 2049, 6
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Cf. also A331309, A331591.
Positions of 1's: A001146.

Programs

  • Mathematica
    Array[If[# == 1, 0, PrimeOmega@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 75] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A331740(n) = if(1==n,0,my(f=factor(n)); sum(i=1,#f~,hammingweight(f[i,2])*(2^(primepi(f[i,1])-1))));

Formula

Additive with a(p^e) = A000120(e) * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n).
a(n) = A001222(A225546(n)).
A331591(n) <= a(n) <= A048675(n).
From Peter Munn, Sep 11 2021: (Start)
a(A001146(m)) = 1.
a(A331590(m, k)) = a(m) + a(k).
For squarefree k, a(k*m^2) = a(k) + a(m) = A048675(k) + a(m).
(End)

A334859 a(n) = A243071(A225546(n)).

Original entry on oeis.org

0, 1, 2, 3, 8, 4, 128, 6, 5, 16, 32768, 12, 2147483648, 256, 32, 7, 9223372036854775808, 10, 170141183460469231731687303715884105728, 48, 512, 65536, 57896044618658097711785492504343953926634992332820282019728792003956564819968, 24, 17, 4294967296, 20, 768
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Crossrefs

Inverse permutation of A334860. Composition of permutations A225546 and A243071, and also of A054429 and A334865.

Formula

a(n) = A243071(A225546(n)).
a(n) = A054429(A334865(n)).
For n >= 1, A000120(a(n)) = A299090(n).
For n > 1, A070939(a(n)) = A334871(n).

A331301 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = min(n, A225546(n)) for all other n, except for odd primes p, f(p) = 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 5, 6, 7, 3, 8, 3, 9, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 7, 22, 23, 24, 19, 3, 25, 26, 27, 3, 28, 3, 29, 30, 31, 3, 13, 32, 33, 34, 35, 3, 36, 37, 38, 39, 40, 3, 41, 3, 42, 43, 10, 44, 45, 3, 46, 47, 48, 3, 36, 3, 49, 50, 51, 52, 53, 3, 54, 17, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 66, 27, 3, 67, 68, 69, 3, 70, 3, 71, 72
Offset: 1

Views

Author

Antti Karttunen, Jan 21 2020

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A064179(i) = A064179(j),
a(i) = a(j) => A064547(i) = A064547(j),
a(i) = a(j) => A302777(i) = A302777(j),
a(i) = a(j) => A331308(i) = A331308(j),
a(i) = a(j) => A331287(i) = A331287(j),
a(i) = a(j) => A331592(i) = A331592(j).

Crossrefs

Programs

  • PARI
    up_to = 10000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux331301(n) = if((n%2)&&isprime(n),0,A331288(n)); \\ Needs also code from A331288.
    v331301 = rgs_transform(vector(up_to, n, Aux331301(n)));
    A331301(n) = v331301[n];

A331308 a(n) = min(d(n), d(A225546(n))), where d gives the number of divisors of n, A000005.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 2, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 8, 2, 4, 6, 6, 4, 8, 2, 10, 3, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 6, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Jan 21 2020

Keywords

Comments

This is not equal to A000005(A331288(n)). The first difference is at n=100, where a(100) = 6, while A000005(A331288(100)) = 9. Note that A225546(100) = 243 and d(243) = 6 < d(100) = 9.

Crossrefs

Formula

a(n) = min(A000005(n), A331309(n)).

A331593 Numbers k that have the same number of distinct prime factors as A225546(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121, 124, 127, 131, 135, 136, 137, 139, 144, 147, 148, 149
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jan 21 2020

Keywords

Comments

Numbers k for which A001221(k) = A331591(k).
Numbers k that have the same number of terms in their factorization into powers of distinct primes as in their factorization into powers of squarefree numbers with distinct exponents that are powers of 2. See A329332 for a description of the relationship between the two factorizations and A225546.
If k is included, then all such x that A046523(x) = k are also included, i.e., all numbers with the same prime signature as k. Notably, primes (A000040) are included, but squarefree semiprimes (A006881) are not.
k^2 is included if and only if k is included, for example A001248 is included, but A085986 is not.

Examples

			There are 2 terms in the factorization of 36 into powers of distinct primes, which is 36 = 2^2 * 3^2 = 4 * 9; but only 1 term in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 36 = 6^(2^1). So 36 is not included.
There are 2 terms in the factorization of 40 into powers of distinct primes, which is 40 = 2^3 * 5^1 = 8 * 5; and also 2 terms in its factorization into powers of squarefree numbers with distinct exponents that are powers of 2, which is 40 = 10^(2^0) * 2^(2^1) = 10 * 4. So 40 is included.
		

Crossrefs

Sequences with related definitions: A001221, A331591, A331592.
Subsequences of complement: A006881, A056824, A085986, A120944, A177492.

Programs

  • Mathematica
    Select[Range@ 150, Equal @@ PrimeNu@ {#, If[# == 1, 1, Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]]} &] (* Michael De Vlieger, Jan 26 2020 *)
  • PARI
    A331591(n) = if(1==n,0,my(f=factor(n),u=#binary(vecmax(f[, 2])),xs=vector(u),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),xs[i]++)); m<<=1); #select(x -> (x>0),xs));
    k=0; n=0; while(k<105, n++; if(omega(n)==A331591(n), k++; print1(n,", ")));

Formula

{a(n)} = {k : A001221(k) = A000120(A267116(k))}.

A331735 a(n) = A009194(A225546(n)) = gcd(A225546(n), sigma(A225546(n))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 3, 1, 12, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 12, 1, 9, 1, 4, 1, 1, 1, 10, 1, 3, 1, 1, 1, 1, 1, 12, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 04 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#, DivisorSigma[1, #]] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331735(n) = if(issquarefree(n),1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); gcd(prod(i=1,u,prime(i)^A048675(prods[i])), prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1))));

Formula

a(n) = A009194(A225546(n)) = gcd(A225546(n), A331733(n)).

A334865 a(n) = A156552(A225546(n)).

Original entry on oeis.org

0, 1, 3, 2, 15, 7, 255, 5, 6, 31, 65535, 11, 4294967295, 511, 63, 4, 18446744073709551615, 13, 340282366920938463463374607431768211455, 47, 1023, 131071, 115792089237316195423570985008687907853269984665640564039457584007913129639935, 23, 30, 8589934591, 27, 767
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2020

Keywords

Crossrefs

Inverse permutation of A334866. Composition of permutations A156552 and A225546, and also of A054429 and A334859.
Cf. A334871.

Formula

a(n) = A156552(A225546(n)).
a(n) = A054429(A334859(n)).
For n > 1, A070939(a(n)) = A334871(n).

A331736 The largest odd divisor of A225546(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 9, 1, 1, 3, 1, 1, 1, 5, 1, 9, 1, 3, 1, 1, 1, 3, 81, 1, 9, 3, 1, 1, 1, 5, 1, 1, 1, 27, 1, 1, 1, 3, 1, 1, 1, 3, 9, 1, 1, 5, 6561, 81, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 1, 9, 15, 1, 1, 1, 3, 1, 1, 1, 27, 1, 1, 81, 3, 1, 1, 1, 5, 25, 1, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 5, 1, 6561, 9, 243, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#/2^IntegerExponent[#, 2] &@ If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] (* Michael De Vlieger, Feb 12 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A331736(n) = { my(f=factor(n)); for (i=1, #f~, my(p=f[i, 1]); f[i, 1] = A019565((f[i, 2]>>1)<<1); f[i, 2] = 2^(primepi(p)-1); ); factorback(f); };
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331736(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=2,e); for(i=2,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=2,u,prime(i)^A048675(prods[i])));

Formula

Multiplicative, with a(prime(i)^j) = A000265(A019565(j))^A000079(i-1).
Equally, with a(prime(i)^j) = A019565(A052928(j))^A000079(i-1).
a(n) = A000265(A225546(n)).
a(n) = A225546(A008833(n)).
Previous Showing 11-20 of 95 results. Next