cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A226821 Numbers of the form 3^j + 8^k, for j and k >= 0.

Original entry on oeis.org

2, 4, 9, 10, 11, 17, 28, 35, 65, 67, 73, 82, 89, 91, 145, 244, 251, 307, 513, 515, 521, 539, 593, 730, 737, 755, 793, 1241, 2188, 2195, 2251, 2699, 4097, 4099, 4105, 4123, 4177, 4339, 4825, 6283, 6562, 6569, 6625, 7073, 10657, 19684, 19691, 19747, 20195, 23779
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 3; b = 8; mx = 25000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226822 Numbers of the form 4^j + 8^k, for j and k >= 0.

Original entry on oeis.org

2, 5, 9, 12, 17, 24, 65, 68, 72, 80, 128, 257, 264, 320, 513, 516, 528, 576, 768, 1025, 1032, 1088, 1536, 4097, 4100, 4104, 4112, 4160, 4352, 4608, 5120, 8192, 16385, 16392, 16448, 16896, 20480, 32769, 32772, 32784, 32832, 33024, 33792, 36864, 49152, 65537
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 4; b = 8; mx = 70000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]
    With[{upto=66000},Select[Union[4^#[[1]]+8^#[[2]]&/@Tuples[Range[ 0,Log[ 4,upto]],2]],#<=upto&]] (* Harvey P. Dale, Sep 15 2019 *)

A226823 Numbers of the form 5^j + 8^k, for j and k >= 0.

Original entry on oeis.org

2, 6, 9, 13, 26, 33, 65, 69, 89, 126, 133, 189, 513, 517, 537, 626, 633, 637, 689, 1137, 3126, 3133, 3189, 3637, 4097, 4101, 4121, 4221, 4721, 7221, 15626, 15633, 15689, 16137, 19721, 32769, 32773, 32793, 32893, 33393, 35893, 48393, 78126, 78133, 78189, 78637
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 5; b = 8; mx = 80000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226824 Numbers of the form 6^j + 8^k, for j and k >= 0.

Original entry on oeis.org

2, 7, 9, 14, 37, 44, 65, 70, 100, 217, 224, 280, 513, 518, 548, 728, 1297, 1304, 1360, 1808, 4097, 4102, 4132, 4312, 5392, 7777, 7784, 7840, 8288, 11872, 32769, 32774, 32804, 32984, 34064, 40544, 46657, 46664, 46720, 47168, 50752, 79424, 262145, 262150, 262180
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 6; b = 8; mx = 300000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226826 Numbers of the form 2^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 3, 5, 9, 10, 11, 13, 17, 25, 33, 41, 65, 73, 82, 83, 85, 89, 97, 113, 129, 137, 145, 209, 257, 265, 337, 513, 521, 593, 730, 731, 733, 737, 745, 761, 793, 857, 985, 1025, 1033, 1105, 1241, 1753, 2049, 2057, 2129, 2777, 4097, 4105, 4177, 4825, 6562, 6563
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 2; b = 9; mx = 7000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226828 Numbers of the form 4^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 5, 10, 13, 17, 25, 65, 73, 82, 85, 97, 145, 257, 265, 337, 730, 733, 745, 793, 985, 1025, 1033, 1105, 1753, 4097, 4105, 4177, 4825, 6562, 6565, 6577, 6625, 6817, 7585, 10657, 16385, 16393, 16465, 17113, 22945, 59050, 59053, 59065, 59113, 59305, 60073, 63145
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 4; b = 9; mx = 70000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226830 Numbers of the form 6^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 7, 10, 15, 37, 45, 82, 87, 117, 217, 225, 297, 730, 735, 765, 945, 1297, 1305, 1377, 2025, 6562, 6567, 6597, 6777, 7777, 7785, 7857, 8505, 14337, 46657, 46665, 46737, 47385, 53217, 59050, 59055, 59085, 59265, 60345, 66825, 105705, 279937, 279945, 280017
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 6; b = 9; mx = 300000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A362743 Positive integers which cannot be written as a sum of distinct numbers of the form 4^a + 5^b (a,b >= 0).

Original entry on oeis.org

1, 3, 4, 10, 12, 18
Offset: 1

Views

Author

Zhi-Wei Sun, May 01 2023

Keywords

Comments

If a(7) exists, it will be greater than 2750.
Conjecture 1: The only terms of the current sequence are 1, 3, 4, 10, 12, 18. Moreover, any positive integer not among 1, 3, 4, 8, 10, 12, 13, 18, 25, 39, 42 can be written as a sum of numbers of the form 4^a + 5^b (a,b>=0) with no one summand dividing another.
Conjecture 2: Let k and m be positive integers greater than one with k*m even. Then, any sufficiently large integer n can be written as a sum of distinct numbers of the form k^a + m^b with a and b nonnegative integers.
Conjecture 3: Let k and m be positive integers greater than one with k*m even. Then, any sufficiently large integer n can be written as a sum of numbers of the form k^a + m^b (a,b >= 0) with no summand dividing another.
Clearly, Conjecture 3 is stronger than Conjecture 2.
See also A362861 for similar conjectures.
a(7) > 50000. - Martin Ehrenstein, May 16 2023

Examples

			a(1) = 1 since 4^a + 5^b > 1 for all a,b >= 0.
a(2) = 3 since 2 = 4^0 + 5^0, and 3 cannot be written as a sum of distinct numbers of the form 4^a + 5^b with a,b >= 0.
		

Crossrefs

Previous Showing 21-28 of 28 results.