cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A243210 Number of inequivalent (mod D_3) ways to place 5 points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

0, 11, 266, 2344, 12907, 53307, 180876, 530654, 1391647, 3335627, 7426885, 15544434, 30867669, 58574800, 106838511, 188190111, 321383808, 533857914
Offset: 3

Views

Author

Heinrich Ludwig, Jun 10 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 10*n^8 - 195*n^7)/23040 + O(n^6)

A231654 Number of non-equivalent ways to choose 5 points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 0, 2, 48, 526, 3450, 16536, 63104, 204202, 580669, 1491096, 3520768, 7754502, 16098425, 31770760, 59998736, 109022244, 191454654, 326158974, 540703008, 874630262, 1383621756, 2144889472, 3263884272, 4882793214, 7190910467, 10437526372, 14947411024
Offset: 1

Views

Author

Heinrich Ludwig, Nov 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n], b = 0, b = 375*n^4 - 1170*n^3 + 210*n^2 - 405*n + 1035]; (n^10 + 5*n^9 - 10*n^8 - 70*n^7 + 25*n^6 + 584*n^5 - 420*n^4 - 480*n^3 - 1216*n^2 + 1536*n + b)/23040, {n, 30}] (* T. D. Noe, Nov 14 2013 *)

Formula

a(n) = (n^10 + 5*n^9 - 10*n^8 - 70*n^7 + 25*n^6 + 584*n^5 - 420*n^4 - 480*n^3 - 1216*n^2 + 1536*n + B)/23040 where B = 375*n^4 - 1170*n^3 + 210*n^2 - 405*n + 1035 if n odd, and B = 0 if n even.
G.f.: x^3*(x^11 -4*x^10 +14*x^9 -78*x^8 -189*x^7 -902*x^6 -1316*x^5 -1476*x^4 -794*x^3 -258*x^2 -36*x -2) / ((x -1)^11*(x +1)^5). - Colin Barker, Feb 15 2014

A234247 Triangle T(n,k) read by rows: Number of non-equivalent ways (mod D_3) to choose k points from an nXnXn triangular grid so that no three of them form a 2X2X2 subtriangle.

Original entry on oeis.org

1, 1, 1, 2, 4, 4, 2, 3, 10, 22, 31, 22, 10, 1, 4, 22, 82, 212, 374, 450, 342, 156, 36, 2, 5, 41, 231, 955, 2880, 6459, 10660, 12948, 11274, 6802, 2645, 595, 57, 2, 7, 72, 566, 3335, 14883, 51470, 139224, 297048, 500147, 661796, 681101, 536322, 314753, 132490
Offset: 1

Views

Author

Heinrich Ludwig, Feb 11 2014

Keywords

Comments

n starts from 1. The maximal number of points that can be chosen from a grid of side n, so that no three of them are forming a subtriangle of side 2, is A007980(n - 1). So k ranges from 1 to A007980(n - 1).
Column #1 (k = 1) is A001399.
Column #2 (k = 2) is A227327.
Without the restriction "non-equivalent (mod D_3)" numbers are given by A234251.

Examples

			Triangle begins
1;
1,  1;
2,  4,   4,   2;
3, 10,  22,  31,   22,   10,     1;
4, 22,  82, 212,  374,  450,   342,   156,    36,    2;
5, 41, 231, 955, 2880, 6459, 10660, 12948, 11274, 6802, 2645, 595, 57, 2;
...
There are exactly T(5, 10) = 2 non-equivalent ways to choose 10 points (X) from a triangular grid of side 5 avoiding that any three of them form a subtriangle of side 2.
       .                X
      X X              . X
     X . X            X . X
    . X X .          . X X .
   X X . X X        X X . X X
		

Crossrefs

A243144 Number of inequivalent (mod D_3) ways to place 5 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 7, 204, 1891, 10846, 46068, 159830, 477033, 1268614, 3075291, 6911894, 14580293, 29145928, 55620816, 101945063, 180327134, 309087474
Offset: 3

Views

Author

Heinrich Ludwig, May 31 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 30*n^8 - 150*n^7)/23040 + O(n^6).
Previous Showing 11-14 of 14 results.