A227567
Number of partitions of n into distinct parts with boundary size 10.
Original entry on oeis.org
1, 1, 3, 5, 9, 14, 23, 32, 49, 69, 98, 134, 186, 247, 334, 440, 574, 742, 962, 1218, 1549, 1943, 2430, 3011, 3728, 4564, 5590, 6795, 8227, 9909, 11914, 14223, 16954, 20124, 23795, 28044, 32974, 38592, 45093, 52530, 60991, 70640, 81667, 94095, 108214, 124177
Offset: 75
A227568
Largest k such that a partition of n into distinct parts with boundary size k exists.
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0
-
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, 1, 0),
`if`(i<1, 0, max(`if`(t>1, 1, 0)+b(n, i-1, iquo(t, 2)),
`if`(i>n, 0, `if`(t=2, 1, 0)+b(n-i, i-1, iquo(t, 2)+2)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..100);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, 1, 0], If[i < 1, 0, Max[If[t > 1, 1, 0] + b[n, i - 1, Quotient[t, 2]], If[i > n, 0, If[t == 2, 1, 0] + b[n - i, i - 1, Quotient[t, 2] + 2]]]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
A224878
Number T(n,k) of partitions of n into distinct parts with boundary size k (where one part of size 0 is allowed).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 1, 2, 1, 0, 1, 3, 2, 0, 1, 5, 2, 0, 1, 4, 5, 0, 1, 4, 6, 1, 0, 1, 6, 8, 1, 0, 1, 7, 9, 3, 0, 1, 6, 13, 4, 0, 1, 7, 15, 7, 0, 1, 7, 18, 10, 0, 1, 8, 20, 14, 1, 0, 1, 11, 23, 17, 2, 0, 1, 8, 28, 24, 3, 0, 1, 9, 31, 30, 5, 0, 1
Offset: 0
T(9,1) = 1: [9].
T(9,2) = 6: [0,9], [1,8], [2,7], [3,6], [4,5], [2,3,4].
T(9,3) = 8: [1,2,6], [1,3,5], [0,1,8], [0,2,7], [0,3,6], [0,4,5], [0,2,3,4], [0,1,2,6].
T(9,4) = 1: [0,1,3,5].
Triangle T(n,k) begins:
1, 1; (namely, the empty set and the set {0})
0, 1, 1;
0, 1, 1;
0, 1, 3;
0, 1, 2, 1;
0, 1, 3, 2;
0, 1, 5, 2;
0, 1, 4, 5;
0, 1, 4, 6, 1;
0, 1, 6, 8, 1;
0, 1, 7, 9, 3;
0, 1, 6, 13, 4;
0, 1, 7, 15, 7;
Cf.
A227551 (no parts of size 0 are allowed).
-
b:= proc(n, i, t) option remember; `if`(n=0 and i<0, `if`(t>1, x, 1),
expand(`if`(i<0, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
`if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
end:
T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..30); # Alois P. Heinz, Jul 23 2013
-
b[n_, i_, t_] := b[n, i, t] = If[n==0 && i<0, If[t>1, x, 1], Expand[If[i<0, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t==2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; T[n_] := Function[p, Table[ Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
Comments