cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A234528 Binomial(10*n+5,n)/(2*n+1).

Original entry on oeis.org

1, 5, 60, 935, 16555, 316251, 6353760, 132321990, 2830853610, 61841702065, 1373736123760, 30935736733230, 704631080073635, 16204866668942000, 375762274309378440, 8775795659568727020, 206241872189050376550, 4873761343609509542490
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=5.

Crossrefs

Programs

  • Magma
    [Binomial(10*n+5, n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
  • Mathematica
    Table[Binomial[10 n + 5, n]/(2 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
  • PARI
    a(n) = binomial(10*n+5,n)/(2*n+1);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^2)^5+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=5.

A234529 3*binomial(10*n+6,n)/(5*n+3).

Original entry on oeis.org

1, 6, 75, 1190, 21285, 409266, 8259888, 172593900, 3701885490, 81033954430, 1803028662435, 40658396849388, 927146157991625, 21342995124948000, 495322997953271580, 11576581508367256920, 272239271289546497046, 6437043284012559773100
Offset: 0

Views

Author

Tim Fulford, Dec 27 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=6.

Crossrefs

Programs

  • Magma
    [3*Binomial(10*n+6, n)/(5*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 27 2013
  • Mathematica
    Table[3 Binomial[10 n + 6, n]/(5 n + 3), {n, 0, 30}] (* Vincenzo Librandi, Dec 27 2013 *)
  • PARI
    a(n) = 3*binomial(10*n+6,n)/(5*n+3);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/3))^6+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=6.

A234570 7*binomial(10*n+7,n)/(10*n+7).

Original entry on oeis.org

1, 7, 91, 1470, 26565, 514206, 10426416, 218618940, 4701550770, 103134123820, 2298706645235, 51909777109596, 1185134654128425, 27309853977084000, 634361032466470620, 14837590383963667320, 349163392095422769942, 8260872214482785042145, 196380752260155290992675
Offset: 0

Views

Author

Tim Fulford, Dec 28 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=10, r=7.

Crossrefs

Programs

  • Magma
    [7*Binomial(10*n+7, n)/(10*n+7): n in [0..30]];
  • Mathematica
    Table[7 Binomial[10 n + 7, n]/(10 n + 7), {n, 0, 30}]
  • PARI
    a(n) = 7*binomial(10*n+7,n)/(10*n+7);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/7))^7+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=10, r=7.
Previous Showing 11-13 of 13 results.