A230634 Numbers n such that m + (sum of digits in base-4 representation of m) = n has exactly two solutions.
17, 19, 21, 34, 36, 38, 51, 53, 55, 65, 67, 70, 72, 82, 84, 86, 99, 101, 103, 116, 118, 120, 130, 132, 135, 137, 147, 149, 151, 164, 166, 168, 181, 183, 185, 195, 197, 200, 202, 212, 214, 216, 229, 231, 233, 246, 248, 250, 257, 261, 262, 263, 267, 274, 276, 278, 291, 293, 295, 308, 310, 312, 322, 324, 327, 329, 339
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
etsQ[n_]:=Count[#+Total[IntegerDigits[#,4]]&/@Range[n-1],n]==2; Select[ Range[ 350],etsQ] (* Harvey P. Dale, May 25 2016 *)
Comments