cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A231633 Number of ways to write n = x + y (x, y > 0) with x^2 * y - 1 prime.

Original entry on oeis.org

0, 0, 1, 2, 3, 1, 3, 2, 5, 2, 4, 2, 7, 2, 5, 3, 5, 3, 10, 4, 5, 3, 8, 3, 14, 6, 5, 4, 11, 5, 11, 3, 11, 9, 4, 5, 10, 5, 11, 9, 12, 3, 19, 7, 11, 6, 12, 9, 11, 7, 17, 7, 13, 5, 22, 3, 3, 15, 16, 5, 25, 4, 9, 11, 13, 5, 19, 6, 22, 6, 11, 6, 39, 6, 24, 7, 7, 6, 25, 8, 21, 11, 24, 7, 31, 7, 19, 11, 33, 10, 14, 8, 15, 27, 18, 9, 21, 4, 27, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 12 2013

Keywords

Comments

Conjectures:
(i) a(n) > 0 for all n > 2. Also, any integer n > 4 can be written as x + y (x, y > 0) with x^2 * y + 1 prime.
(ii) Each n = 2, 3, ... can be expressed as x + y (x, y > 0) with (x*y)^2 + x*y + 1 prime.
(iii) Also, any integer n > 2 can be written as x + y (x, y > 0) with 2*(x*y)^2 - 1 (or (x*y)^2 + x*y - 1) prime.
From Mauro Fiorentini, Jul 31 2023: (Start)
Both parts of conjecture (i) verified for n up to 10^9.
Conjecture (ii) and both parts of conjecture (iii) verified for n up to 10^7. (End)

Examples

			a(6) = 1 since 6 = 4 + 2 with 4^2*2 - 1 = 31 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[x^2*(n-x)-1],1,0],{x,1,n-1}]
    Table[a[n],{n,1,100}]

A231776 Least positive integer k <= n with (2^k + k) * n - 1 prime, or 0 if such a number k does not exist.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 2, 10, 1, 2, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 8, 6, 1, 2, 1, 4, 2, 2, 1, 8, 1, 4, 1, 2, 2, 14, 2, 2, 1, 2, 1, 2, 6, 2, 1, 4, 2, 2, 3, 8, 1, 6, 1, 2, 1, 8, 5, 4, 1, 2, 1, 2, 6, 42, 2, 6, 2, 4, 2, 2, 1, 2, 1, 4, 1, 4, 2, 8, 1, 2, 1, 2, 1, 6, 1, 8, 20, 2, 1, 2, 6, 10, 1, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 13 2013

Keywords

Comments

We find that 75011 is the only value of n <= 10^5 with a(n) = 0. The least positive integer k with (2^k + k)*75011 - 1 prime is 81152.

Examples

			a(3) = 2 since (2^1 + 1) * 3 - 1 = 8 is not prime, but (2^2 + 2) * 3 - 1 = 17 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[PrimeQ[(2^k+k)*n-1],Print[n," ",k];Goto[aa]],{k,1,n}]; Print[n," ",0];Label[aa];Continue,{n,1,100}]
    lpi[n_]:=Module[{k=1},While[!PrimeQ[n(2^k+k)-1],k++];k]; Array[lpi,100] (* Harvey P. Dale, Aug 10 2019 *)

A232109 Least prime p < n + 5 with n + (p-1)*(p-3)/8 prime, or 0 if such a prime p does not exist.

Original entry on oeis.org

5, 3, 3, 5, 3, 5, 3, 7, 11, 5, 3, 5, 3, 7, 17, 5, 3, 5, 3, 7, 11, 5, 3, 23, 17, 7, 11, 5, 3, 5, 3, 13, 11, 7, 19, 5, 3, 7, 17, 5, 3, 5, 3, 7, 17, 5, 3, 23, 11, 7, 11, 5, 3, 23, 17, 7, 11, 5, 3, 5, 3, 31, 11, 7, 19, 5, 3, 7, 11, 5, 3, 5, 3, 13, 17, 7, 19, 5, 3, 7, 17, 5, 3, 23, 17, 7, 11, 5, 3, 29, 11, 13, 11, 7, 19, 5, 3, 7, 11, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 18 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Moreover, for any integer n > 1 there exists a prime p < 2*sqrt(n)*log(7n) such that n + (p-1)*(p-3)/8 is prime.
This implies that any integer n > 1 can be written as (p-1)/2 + q with q a positive integer, and p and (p^2-1)/8 + q both prime.

Examples

			a(1) = 5 since neither 1 + (2-1)*(2-3)/8 = 7/8 nor 1 + (3-1)*(3-3)/8 = 1  is prime, but 1 + (5-1)*(5-3)/8 = 2 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[PrimeQ[n+(Prime[k]-1)(Prime[k]-3)/8],Goto[aa]],{k,1,PrimePi[n+4]}];
    Print[n," ",0];Label[aa];Continue,{n,1,100}]
Previous Showing 11-13 of 13 results.