cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A255532 Indices of primes in the 9th-order Fibonacci number sequence, A251749.

Original entry on oeis.org

10, 14, 19, 29, 404, 1744, 8854, 27754
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(9) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,0,1,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255533 Indices of primes in the 9th-order Fibonacci number sequence, A251750.

Original entry on oeis.org

10, 33, 43, 253, 1253, 2389
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,0,1,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A255534 Indices of primes in the 9th-order Fibonacci number sequence, A251751.

Original entry on oeis.org

10, 12, 232, 502
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(5) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,1,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst
    Flatten[Position[LinearRecurrence[Table[1,{9}],{0,0,1,0,0,0,0,0,0},510], ?(PrimeQ[#]&)]]-1 (* _Harvey P. Dale, Feb 27 2016 *)

A255536 Indices of primes in the 9th-order Fibonacci number sequence, A251752.

Original entry on oeis.org

10, 11, 21, 29, 301, 57089
Offset: 1

Views

Author

Robert Price, Feb 24 2015

Keywords

Comments

a(7) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,1,0,0,0,0,0,0,0}; step=9; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,n]]; a=RotateLeft[a]; a[[step]]=sum]; lst

A366583 a(2) = a(3) = 1; for n >3, a(n) = smallest prime factor of n-th Tribonacci number.

Original entry on oeis.org

1, 1, 2, 2, 7, 13, 2, 2, 3, 149, 2, 2, 3, 5, 2, 2, 103, 13, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 23, 5, 2, 2, 3, 103, 2, 2, 7, 3, 2, 2, 167, 11, 2, 2, 5, 3, 2, 2, 199, 5, 2, 2, 7, 163, 2, 2, 29531, 5, 2, 2, 3, 5, 2, 2, 3, 199, 2, 2, 7, 19, 2, 2, 1259, 3, 2, 2, 3, 3
Offset: 2

Views

Author

Tyler Busby, Oct 13 2023

Keywords

Examples

			For n=24: A000073(24) = 2*2*2*51343, so a(24)=2.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[1, 1]] & /@ LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 78] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A020639(A000073(n)).

A366584 a(2) = a(3) = 1; for n >3, a(n) = largest prime factor of n-th Tribonacci number.

Original entry on oeis.org

1, 1, 2, 2, 7, 13, 3, 11, 3, 149, 137, 7, 103, 31, 7, 103, 103, 79, 97, 5501, 3469, 919, 51343, 188869, 853, 1427, 470077, 239, 313, 307, 73, 883483, 11113, 227, 53, 3833, 631, 40093, 4349, 354763, 142739687, 45181, 40320889337, 71584631, 3331, 5500283
Offset: 2

Views

Author

Tyler Busby, Oct 13 2023

Keywords

Examples

			For n=24: A000073(24) = 2*2*2*51343, so a(24)=51343.
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[#][[-1, 1]] & /@ LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 46] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A006530(A000073(n)).

A230016 Indices of primes in the tribonacci-like sequence, A214825.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 16, 17, 26, 32, 104, 109, 120, 133, 312, 546, 608, 2274, 2527, 2932, 4462, 4680, 6001, 7103, 17402, 17874, 20664, 26341, 27954, 32869, 36204, 41521, 49065, 64172, 66318, 196078
Offset: 1

Views

Author

Robert Price, Feb 22 2014

Keywords

Comments

a(39) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1,3,3}; Print[1];Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

A230017 Prime terms in the tribonacci-like sequence, A214825.

Original entry on oeis.org

3, 3, 7, 13, 23, 43, 79, 491, 19009, 34963, 8422747, 326099713, 3699221592878859104602113553, 77867739062209443974741001359, 63460200981504216633346603450897, 174962190954783387911511685367053207
Offset: 1

Views

Author

Robert Price, Feb 22 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a={1,3,3}; Print[3]; Print[3]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A233190 Indices of primes in the tribonacci-like sequence, A214899.

Original entry on oeis.org

0, 2, 3, 9, 13, 27, 35, 39, 87, 95, 97, 99, 113, 131, 233, 971, 3851, 5637, 6553, 106099
Offset: 1

Views

Author

Robert Price, Dec 05 2013

Keywords

Comments

a(21) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={2,1,2};Print[1],Print[2];For[n=3,n<=1000,n++,sum=Plus@@a;If[PrimeQ[sum],Print[n]];a=RotateLeft[a]; a[[3]]=sum]

A234703 Primes in the tribonacci-like sequence, A214727.

Original entry on oeis.org

2, 2, 5, 101, 13241, 151537, 66848890001808737, 8602289657912317933269334679427588251509673524841616601
Offset: 1

Views

Author

Robert Price, Dec 29 2013

Keywords

Comments

The next term (a(9)) has 97 digits. - Harvey P. Dale, Feb 22 2023

Crossrefs

Programs

  • Mathematica
    a={1,2,2}; Print[2]; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
    Select[LinearRecurrence[{1,1,1},{1,2,2},500],PrimeQ] (* Harvey P. Dale, Feb 22 2023 *)
Previous Showing 41-50 of 56 results. Next