A234506
a(n) = binomial(9*n+3, n)/(3*n+1).
Original entry on oeis.org
1, 3, 30, 406, 6327, 107019, 1909908, 35399520, 674842149, 13147742322, 260626484118, 5239783981320, 106585537781775, 2189670831627678, 45366284782209600, 946815917066740800, 19887218367823853937, 420076689292591271325, 8917736795123409615060, 190161017612160607167948, 4071301730663135449185705
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[Binomial(9*n+3, n)/(3*n+1): n in [0..30]];
-
Table[Binomial[9n+3, n]/(3n+1), {n, 0, 30}]
-
a(n) = binomial(9*n+3,n)/(3*n+1);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^3)^3+x*O(x^n)); polcoeff(B, n)}
-
[binomial(9*n+3, n)/(3*n+1) for n in (0..30)] # G. C. Greubel, Feb 09 2021
A234508
5*binomial(9*n+5,n)/(9*n+5).
Original entry on oeis.org
1, 5, 55, 775, 12350, 211876, 3818430, 71282640, 1366368375, 26735839650, 531838637759, 10723307329700, 218658647805780, 4501362056183300, 93426735902060000, 1952884185072496992, 41074876852203972645, 868669222741822476975, 18460669540059117038250, 394033629095915025876750, 8443512680148379948569910
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[5*Binomial(9*n+5, n)/(9*n+5): n in [0..30]];
-
Table[5 Binomial[9 n + 5, n]/(9 n + 5), {n, 0, 30}]
-
a(n) = 5*binomial(9*n+5,n)/(9*n+5);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/5))^5+x*O(x^n)); polcoeff(B, n)}
A234509
2*binomial(9*n+6,n)/(3*n+2).
Original entry on oeis.org
1, 6, 69, 992, 15990, 276360, 5006386, 93817152, 1803606255, 35373572460, 704995403541, 14236901646240, 290687378847684, 5990903682047592, 124463414269524000, 2603845580096662656, 54807372993836345589, 1159856934027109448130, 24663454505518980363102, 526708243449729452311200, 11291926596343014148087470
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
-
[2*Binomial(9*n+6, n)/(3*n+2): n in [0..30]];
-
Table[6 Binomial[9 n + 6, n]/(9 n + 6), {n, 0, 30}]
-
a(n) = 2*binomial(9*n+6,n)/(3*n+2);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/2))^6+x*O(x^n)); polcoeff(B, n)}
Comments