A253706
Primes in the 8th-order Fibonacci numbers A079262.
Original entry on oeis.org
2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705.
-
a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
-
lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
A230017
Prime terms in the tribonacci-like sequence, A214825.
Original entry on oeis.org
3, 3, 7, 13, 23, 43, 79, 491, 19009, 34963, 8422747, 326099713, 3699221592878859104602113553, 77867739062209443974741001359, 63460200981504216633346603450897, 174962190954783387911511685367053207
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873.
-
a={1,3,3}; Print[3]; Print[3]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
A234703
Primes in the tribonacci-like sequence, A214727.
Original entry on oeis.org
2, 2, 5, 101, 13241, 151537, 66848890001808737, 8602289657912317933269334679427588251509673524841616601
Offset: 1
-
a={1,2,2}; Print[2]; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
Select[LinearRecurrence[{1,1,1},{1,2,2},500],PrimeQ] (* Harvey P. Dale, Feb 22 2023 *)
Original entry on oeis.org
2, 3, 23, 60217, 108412217573460833, 143003097309669584171480759
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660.
-
a={0,0,1,2}; Print[2]; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
a(1)=2 prepended and Mathematica program corrected by
Robert Price, Sep 09 2014
A242316
Prime terms in the tribonacci-like sequence A214826.
Original entry on oeis.org
17, 103, 1764391, 8907752079422393063, 28959877095025359725108610631647478770525190687597954707985655095645523042346644747326776183477265033
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873 A214826,
A242315.
-
a={1,4,4}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
Select[LinearRecurrence[{1,1,1},{1,4,4},400],PrimeQ] (* Harvey P. Dale, Mar 17 2016 *)
A242325
Prime terms in the tribonacci-like sequence A214827.
Original entry on oeis.org
5, 5, 11, 37, 127, 233, 1451, 4909, 9029, 16607, 103333, 37314473023, 232180447061, 2657194941637, 13356042204482014297297131147848321, 4717604056747741831285902446873182186115052544834224581062711115537322612895948580479
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A214827,
A242324.
-
a={1,5,5}; Print[5]; Print[5]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
A247028
Primes in tetranacci sequence A001631.
Original entry on oeis.org
2, 7, 193, 19079, 1823013184807, 324494495853101147203936847, 16085434555484907108254435283952049, 255525859571903290673264616283734506003204622439226993660213169027169
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027.
-
a={0,0,1,0}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
A247946
Primes in the tetranacci sequence A000288.
Original entry on oeis.org
7, 13, 181, 349, 673, 1297, 34513, 90799453, 175021573, 4657290577, 17304140641, 1131469145856472270556751793, 1544310310927991136025089626209, 1442398599584422734286432395814518441223501, 18598135820391234761502881488353916158281807617671450769
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561.
-
a={1,1,1,1}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
Select[LinearRecurrence[{1,1,1,1},{1,1,1,1},300],PrimeQ] (* Harvey P. Dale, Jan 15 2015 *)
Comments