cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A347617 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into exactly n parts.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 4, 7, 1, 0, 1, 1, 8, 61, 34, 1, 0, 1, 1, 16, 547, 1906, 192, 1, 0, 1, 1, 32, 4921, 117874, 91606, 1206, 1, 0, 1, 1, 64, 44287, 7478386, 53830967, 6023602, 8033, 1, 0, 1, 1, 128, 398581, 477568114, 33219689231, 43054503928, 505853354, 55974, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Examples

			Square array begins:
  0, 1,   1,     1,        1,           1, ...
  1, 1,   1,     1,        1,           1, ...
  0, 1,   2,     4,        8,          16, ...
  0, 1,   7,    61,      547,        4921, ...
  0, 1,  34,  1906,   117874,     7478386, ...
  0, 1, 192, 91606, 53830967, 33219689231, ...
		

Crossrefs

Columns k=0..3 give A063524, A000012, A206240, A304176.
Main diagonal gives A347606.

Programs

  • PARI
    T(n, k) = if(k==0, n==1, polcoef(prod(j=1, n, 1/(1-x^j+x*O(x^(n^k-n)))), n^k-n));

Formula

T(n,k) = [x^(n^k-n)] Product_{j=1..n} 1/(1-x^j).

A347618 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into n or more parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 21, 25, 1, 0, 1, 1, 230, 2996, 201, 1, 0, 1, 1, 8348, 18004286, 1741256, 1773, 1, 0, 1, 1, 1741629, 133978259344766, 365749566865192, 3163112106, 16751, 1, 0, 1, 1, 4351078599, 233202632378520643600874780, 61847822068260244309086870896081, 1606903190858354687391986, 15285150382556, 165083, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,       1,               1, ...
  1, 1,   1,       1,               1, ...
  0, 1,   4,      21,             230, ...
  0, 1,  25,    2996,        18004286, ...
  0, 1, 201, 1741256, 365749566865192, ...
		

Crossrefs

Columns k=0..3 give A019590(n+1), A000012, A347585, A347604.
Main diagonal gives A347605.

Formula

T(n,k) = [x^(n^k)] Sum_{i>=n} x^i / Product_{j=1..i} (1 - x^j).
T(n,k) = A347615(n,k) + A347617(n,k) - A238016(n,k).

A238634 Number of partitions of 7^n into parts that are at most 7.

Original entry on oeis.org

1, 15, 16475, 569704489, 54667189410224, 6242342067484101895, 731267824140098782358035, 85980297709044488588773397089, 10114611726199237476675435354424104, 1189959092808570377265545326042454670975, 139997247522791157386395916200494707946968395
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=7 of A238016.

Formula

a(n) = [x^(7^n)] Product_{j=1..7} 1/(1-x^j).

A238635 Number of partitions of 8^n into parts that are at most 8.

Original entry on oeis.org

1, 22, 116263, 57733506640, 98149884074667116, 200386212932492140762672, 418829370245413954052212657987, 877979540384895591800176962368065072, 1841159754991692001851990839259642586671980, 3861166489120966379893685013624485791901912419888
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=8 of A238016.

Formula

a(n) = [x^(8^n)] Product_{j=1..8} 1/(1-x^j).

A238636 Number of partitions of 9^n into parts that are at most 9.

Original entry on oeis.org

1, 30, 845105, 6944433285769, 241192889005578902877, 10133053906998476170548376403, 435014756168760380909523387186194290, 18720322073127387624828552135278902045913865, 805821524592736878546553406787954567208757510893718
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=9 of A238016.

Formula

a(n) = [x^(9^n)] Product_{j=1..9} 1/(1-x^j).

A238637 Number of partitions of 10^n into parts that are at most 10.

Original entry on oeis.org

1, 42, 6292069, 968356321790171, 778400276435728381405745, 761287353202857218355451068558296, 759593815557626617904440619008375351308296, 759424638305250205001161810310150848799911916053194, 759407722344103064122231022019913967203947808354408941053194
Offset: 0

Views

Author

Alois P. Heinz, Mar 01 2014

Keywords

Crossrefs

Row n=10 of A238016.

Formula

a(n) = [x^(10^n)] Product_{j=1..10} 1/(1-x^j).
Previous Showing 21-26 of 26 results.