cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A238672 Primes p such that (p+10)^2+10 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

17, 197, 281, 887, 1061, 1447, 1601, 1877, 2297, 2383, 2927, 3539, 3637, 3697, 3727, 4201, 4421, 4967, 5261, 5387, 5737, 6007, 6353, 6737, 6997, 7451, 7621, 8039, 8369, 8447, 8627, 8699, 9181, 9371, 9467, 9689, 9839, 10151, 10193, 10391, 10567, 10739, 10939
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=10 of A238086.

A238673 First prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

3, 7, 11, 29, 193, 139, 107, 181, 101, 17, 379, 641, 167, 3691, 257, 2243, 1279, 1217, 3581, 757, 6113, 971, 5011, 5843, 317, 15199, 2741, 761, 59221, 6067, 14423, 5167, 13043, 3191, 43321, 8819, 2333, 23497, 15083, 15107, 414769, 13841, 20477, 29101, 3137
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=1 of A238086.

Programs

  • Mathematica
    pQ[n_]:=Module[{pr=2,c},c=Table[(pr+i)^2+i,{i,n}];While[!PrimeQ[ Last[ c]]|| AnyTrue[Most[c],PrimeQ],pr=NextPrime[pr];c=Table[(pr+i)^2+i,{i,n}]];pr]; Array[pQ,50] (* Harvey P. Dale, Nov 18 2014 *)

A238674 Second prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

5, 31, 47, 41, 331, 523, 293, 277, 191, 197, 2389, 877, 811, 4111, 587, 2609, 5437, 1481, 6673, 1483, 12809, 1907, 5689, 13331, 3677, 25939, 4457, 3593, 162973, 6089, 38603, 33091, 26693, 16883, 65557, 19259, 5657, 49711, 23081, 25657, 480409, 17837, 21517
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=2 of A238086.

A238675 Third prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

13, 37, 59, 113, 409, 563, 359, 541, 233, 281, 3229, 947, 827, 5431, 677, 3719, 5521, 1811, 7283, 3709, 16963, 2087, 9001, 20161, 3947, 49009, 7057, 3797, 169063, 6803, 52253, 36097, 31481, 27733, 71167, 34019, 6827, 93481, 41849, 46727, 486433, 26417, 23417
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=3 of A238086.

A238676 Fourth prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

19, 43, 61, 163, 457, 769, 389, 937, 311, 887, 4003, 953, 1049, 8101, 719, 8969, 6793, 1847, 7823, 4549, 18899, 2267, 16087, 20921, 4127, 56149, 8387, 5189, 177109, 9257, 61493, 36451, 34807, 30491, 92941, 39569, 10181, 141961, 45971, 64067, 497899, 33347
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=4 of A238086.

A238677 Fifth prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

23, 79, 67, 173, 487, 853, 397, 1381, 881, 1061, 8713, 1187, 1091, 8581, 839, 9413, 6991, 1889, 12821, 5347, 20593, 2477, 20719, 21089, 5861, 83869, 8867, 6547, 193741, 9341, 62723, 39727, 36131, 35491, 107077, 51563, 12527, 224467, 50111, 71437, 1150309
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=5 of A238086.

A238678 Sixth prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

53, 97, 71, 199, 787, 1019, 401, 1741, 1103, 1447, 10453, 1283, 1223, 9631, 1021, 12109, 15361, 1913, 14723, 6397, 26513, 2789, 25603, 21491, 6689, 87103, 10247, 8597, 254911, 12007, 71453, 47521, 37529, 39971, 109147, 59453, 12791, 256147, 59611, 78317
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=6 of A238086.

A238679 Seventh prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

73, 103, 127, 211, 829, 1489, 433, 2551, 1291, 1601, 10663, 1619, 1399, 10723, 1109, 12413, 16447, 2347, 19961, 7237, 27509, 4013, 25867, 22013, 6947, 103483, 11351, 10289, 281959, 12203, 93083, 60457, 42197, 45821, 116167, 59723, 14303, 269377, 61613, 92717
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=7 of A238086.

A238680 Eighth prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

83, 241, 131, 251, 991, 1553, 461, 2617, 1733, 1877, 11083, 1667, 1487, 13831, 1277, 14419, 26407, 2381, 23993, 7687, 30089, 4241, 30259, 27361, 9281, 127423, 11471, 10601, 290419, 15227, 125753, 62299, 43451, 55103, 192037, 61553, 14741, 358447, 63839, 98927
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=8 of A238086.

A238681 Ninth prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

89, 271, 137, 449, 1087, 1559, 647, 2677, 1831, 2297, 11119, 1787, 1567, 14071, 1511, 14653, 29473, 2399, 25943, 15307, 32993, 5309, 35977, 35963, 10457, 130069, 11801, 10831, 333673, 15451, 153529, 62497, 45677, 75389, 196699, 66383, 20411, 393097, 76631
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Row n=9 of A238086.
Previous Showing 11-20 of 22 results. Next