cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A240740 Number of compositions of n having exactly five fixed points.

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 70, 155, 321, 665, 1368, 2802, 5711, 11623, 23526, 47567, 95967, 193316, 388893, 781519, 1569154, 3148292, 6313052, 12652917, 25349663, 50770869, 101658425, 203506976, 407323589, 815151106, 1631122032, 3263576647, 6529319168, 13062156519
Offset: 15

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Examples

			a(17) = 3: 123416, 123452, 1234511.
a(18) = 7: 123156, 123426, 123453, 1234161, 1234512, 1234521, 12345111.
a(19) = 16: 121456, 123256, 123436, 123454, 1231561, 1234117, 1234162, 1234261, 1234513, 1234522, 1234531, 12341611, 12345112, 12345121, 12345211, 123451111.
		

Crossrefs

Column k=5 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 6))
        end:
    a:= n-> coeff(b(n, 1), x, 5):
    seq(a(n), n=15..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 6}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 5}]; Table[a[n], {n, 15, 50}] (* Jean-François Alcover, Nov 07 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = 0.00004645976701216392005148703795279235922588728788878226802174676992574918... . - Vaclav Kotesovec, Sep 07 2014

A240741 Number of compositions of n having exactly six fixed points.

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 155, 334, 691, 1427, 2928, 5985, 12181, 24718, 50052, 101060, 203767, 410240, 824943, 1657225, 3326530, 6672880, 13378262, 26809661, 53706442, 107555030, 215342201, 431063039, 862743300, 1726491928, 3454620480, 6911903675, 13828137410
Offset: 21

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Crossrefs

Column k=6 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 7))
        end:
    a:= n-> coeff(b(n, 1), x, 6):
    seq(a(n), n=21..60);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 7}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 6}]; Table[a[n], {n, 21, 60}] (* Jean-François Alcover, Nov 07 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = 0.00000076865174785709491795394332754061911033555649913960925841174268897641... . - Vaclav Kotesovec, Sep 07 2014

A240742 Number of compositions of n having exactly seven fixed points.

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 162, 334, 706, 1457, 2996, 6130, 12496, 25383, 51423, 103937, 209723, 422418, 849843, 1707917, 3429407, 6881120, 13798903, 27657921, 55414350, 110989891, 222243203, 444916908, 890536103, 1782217460, 3566301121, 7135641348, 14276228900
Offset: 28

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Crossrefs

Column k=7 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 8))
        end:
    a:= n-> coeff(b(n, 1), x, 7):
    seq(a(n), n=28..65);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 8}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 7}]; Table[a[n], {n, 28, 65}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = 0.00000000620059990498579334409439332104298331660404026106645127910814204326... . - Vaclav Kotesovec, Sep 07 2014

A240743 Number of compositions of n having exactly eight fixed points.

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 162, 342, 706, 1474, 3030, 6207, 12660, 25739, 52174, 105516, 212972, 429169, 863721, 1736237, 3487091, 6998235, 14036039, 28137051, 56380699, 112936022, 226157834, 452782897, 906328973, 1813903281, 3629837847, 7262985540, 14531361628
Offset: 36

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Crossrefs

Column k=8 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 9))
        end:
    a:= n-> coeff(b(n, 1), x, 8):
    seq(a(n), n=36..70);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 9}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 8}]; Table[a[n], {n, 36, 70}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = 0.00000000002465665216785151607617323669331409016812218707985200021988733051... . - Vaclav Kotesovec, Sep 07 2014

A240744 Number of compositions of n having exactly nine fixed points.

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 162, 342, 715, 1474, 3049, 6245, 12746, 25922, 52571, 106353, 214731, 432827, 871240, 1751725, 3518787, 7062725, 14167004, 28402284, 56916681, 114017164, 228335406, 457163368, 915131854, 1831578490, 3665302380, 7334102844, 14673905376
Offset: 45

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Crossrefs

Column k=9 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 10))
        end:
    a:= n-> coeff(b(n, 1), x, 9):
    seq(a(n), n=45..80);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 10}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 9}]; Table[a[n], {n, 45, 80}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = 0.00000000000004863374631933235641619389991611011374568106537836728124272498... . - Vaclav Kotesovec, Sep 07 2014

A240745 Number of compositions of n having exactly ten fixed points.

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 162, 342, 715, 1484, 3049, 6266, 12788, 26017, 52773, 106791, 215654, 434766, 875271, 1760058, 3535850, 7097682, 14238236, 28546852, 57209494, 114608933, 229529157, 459567874, 919969090, 1841299703, 3684822059, 7373269689, 14752449235
Offset: 55

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Crossrefs

Column k=10 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 11))
        end:
    a:= n-> coeff(b(n, 1), x, 10):
    seq(a(n), n=55..90);
  • Mathematica
    $RecursionLimit = 500; b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 11}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 10}]; Table[a[n], {n, 55, 90}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = 0.00000000000000004775074360891061857694419107988147903498648930287568336403... . - Vaclav Kotesovec, Sep 07 2014

A383175 Number of compositions of n such that any fixed point k can be k different colors.

Original entry on oeis.org

1, 1, 2, 5, 10, 22, 48, 101, 213, 450, 945, 1961, 4064, 8385, 17242, 35332, 72141, 146924, 298552, 605377, 1225277, 2475912, 4995754, 10067848, 20267680, 40762951, 81916919, 164504411, 330155437, 662265817, 1327860471, 2661376529, 5332341881, 10680912173
Offset: 0

Views

Author

John Tyler Rascoe, Apr 18 2025

Keywords

Examples

			a(3) = 5 counts: (3), (2,1), (1_a,2_a), (1_a,2_b), (1_a,1,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
         `if`(n<=i+j, ceil(2^(n-j-1)), b(n-j, i+1))*
         `if`(i=j, j, 1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..33);  # Alois P. Heinz, Apr 18 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N, prod(j=1,i, j*x^j-x^j+x/(1-x))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{i>0} Product_{j=1..i} ( j*x^j - x^j + x/(1-x) ).
Previous Showing 11-17 of 17 results.