cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A238360 Number of genus-10 rooted maps with n edges.

Original entry on oeis.org

15230046989184655753125, 5199629454143883380553750, 909887917857275652461097750, 108861830345440643086946970900, 10021124647635764856828690342402, 757187906770815991999545249667404, 48918614114003431712044170834572688, 2779227352989564224315657269511192976, 141720718575991991799057452443438430580
Offset: 20

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=10 of A269919.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, this sequence.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 10];
    Table[a[n], {n, 20, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A269925 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.

Original entry on oeis.org

59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-9 terms.

Examples

			Triangle starts:
n\f  [1]             [2]             [3]             [4]
[10] 59520825;
[11] 4304016990,     4304016990;
[12] 15895975422,    354949166565,   158959754226;
[13] 4034735959800,  14805457339920, 14805457339920, 4034735959800;
[14] ...
		

Crossrefs

Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, A288285 f=5, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.
Row sums give A238355 (column 5 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 15; G = 5; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A238396 Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Examples

			Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
		

References

  • David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.

Crossrefs

Sum of row n is A000698(n+1).
See A267180 for nonorientable analog.
The triangle without the zeros is A269919.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
  • PARI
    N=20;
    MEM=matrix(N+1,N+1, r,c, -1);  \\ for memoization
    Q(n,g)=
    {
        if (n<0,  return( (g<=0) ) ); \\ not given in paper
        if (g<0,  return( 0 ) ); \\ not given in paper
        if (n<=0, return( g==0 ) );  \\ as in paper
        my( m = MEM[n+1,g+1] );
        if ( m != -1,  return(m) );  \\ memoized value
        my( t=0 );
        t += (4*n-2)/3 * Q(n-1, g);
        t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
        my(l, j);
        t += 1/2*
            sum(k=1, n-1, l=n-k;  \\ l+k == n, both >= 1
                sum(i=0, g, j=g-i;  \\ i+j == g, both >= 0
                    (2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
                );
            );
        t *= 6/(n+1);
        MEM[n+1, g+1] = t;  \\ memoize
        return(t);
    }
    for (n=0, N, for (g=0, n, print1(Q(n, g),", "); );  print(); ); /* print triangle */

Formula

From Gheorghe Coserea, Mar 11 2016: (Start)
(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
(End)

A239918 Number of unrooted maps with n edges of (orientable) genus 5.

Original entry on oeis.org

2976853, 391288854, 28036387466, 1449247494892, 60441165724160, 2158501051914340, 68463726004852884, 1976314846820429680, 52825750657523709792, 1324265997531577820388, 31439565426089264422698, 712298211293218414835136
Offset: 10

Views

Author

Alain Giorgetti, Mar 29 2014

Keywords

Crossrefs

Column k=5 of A379438.
Cf. A238355 (rooted), A297881 (unsensed).

A297881 Number of unsensed genus 5 maps with n edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1491629, 195728778, 14019733828, 724646387874, 30220873171570, 1079253898643492, 34231899372185491, 988157793188200998, 26412878913430197293, 662133032168309300424, 15719783014093104131694
Offset: 0

Views

Author

Evgeniy Krasko, Jan 07 2018

Keywords

Crossrefs

Column k=5 of A379439.
Cf. A238355 (rooted), A239918 (sensed).
Previous Showing 11-15 of 15 results.