cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A241877 Number of ascent sequences of length n with exactly seven descents.

Original entry on oeis.org

262, 45355, 2945144, 115640368, 3310089672, 76098190354, 1488843551061, 25742974021760, 403792980134432, 5855533942758206, 79621493875268300, 1026297720267259815, 12647422247984279889, 150029397902618780880, 1722644140748876548506, 19232187878731653646068
Offset: 12

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=7 of A238858.

Programs

  • Maple
    gf:= -(17168622184562688000*x^30 -165990345532165324800*x^29 +764265306648034344960*x^28 -2227477724647806173184*x^27 +4607560717763655094272*x^26 -7188029219365307265024*x^25 +8771965813694591513856*x^24 -8569977967582670585472*x^23
    +6800372189878230880624*x^22 -4416996852693953991344*x^21 +2351482055430886572808*x^20 -1019029358088416724440*x^19 +351892979022335268927*x^18 -91463393523130541293*x^17 +14605225422499318735*x^16 +581363497155871899*x^15 -1354208397644673655*x^14 +543643959424172265*x^13 -143184185751363124*x^12 +28224011083685669*x^11
    -4287423192624419*x^10 +497037468594090*x^9 -41750353408807*x^8 +2131740277605*x^7 -1413256993*x^6 -10610071423*x^5 +985051074*x^4 -46399717*x^3 +1072084*x^2 -2911*x -262) *x^12 / ((9*x-1) *(8*x-1)^2 *(7*x-1)^3 *(6*x-1)^4 *(5*x-1)^5 *(4*x-1)^6 *(x-1)^6 *(3*x-1)^7 *(2*x-1)^8):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=12..30);

Formula

G.f.: see Maple program.
Recurrence: a(n) + 1834933472251084800000*a(n-42) - 29890483744407552000000*a(n-41) + 234674273308869918720000*a(n-40) - 1183460488011095998464000*a(n-39) + 4310616672232759649894400*a(n-38) - 12090110137133949555572736*a(n-37) + 27184553419658691145826304*a(n-36) - 50373565574321929969631232*a(n-35) + 78480773039085711009583104*a(n-34) - 104366600043561766882639872*a(n-33) + 119864288120509558700623872*a(n-32) - 120001551815106232058621952*a(n-31) + 105512719130330131388301056*a(n-30) - 81976491762435391083895296*a(n-29) + 56559443885408831033142528*a(n-28) - 34795705814009881313016960*a(n-27) + 19151295749903563509912816*a(n-26) - 9455656062744697462579008*a(n-25) + 4196934270184509793587272*a(n-24) - 1677368435971517310106656*a(n-23) + 604352766672278616765729*a(n-22) - 196445323903680067600818*a(n-21) + 57626984175715546403919*a(n-20) - 15254915763530534131260*a(n-19) + 3642342102661923055475*a(n-18) - 783681290841137732154*a(n-17) + 151735847111641722501*a(n-16) - 26388336799044975888*a(n-15) + 4112001903716894106*a(n-14) - 572369284218905028*a(n-13) + 70895600662640518*a(n-12) - 7777305431924328*a(n-11) + 751228057187814*a(n-10) - 63431687262564*a(n-9) + 4639853686722*a(n-8) - 290658484080*a(n-7) + 15363592789*a(n-6) - 671812362*a(n-5) + 23646363*a(n-4) - 643644*a(n-3) + 12711*a(n-2) - 162*a(n-1). - Fung Lam, May 06 2014

A241878 Number of ascent sequences of length n with exactly eight descents.

Original entry on oeis.org

76, 35209, 4039194, 242899690, 9885744698, 308499975033, 7934181861432, 176105387674796, 3481327075812644, 62693622772259358, 1045913922174474652, 16373263083718686437, 242940967901333077989, 3444033483761421576832, 46951392190123945806932
Offset: 13

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Comments

Recurrence is of 52 order with constant coefficients (see link below).

Crossrefs

Column k=8 of A238858.

Programs

  • Maple
    gf:= -(52553412112007194214400000*x^39 -613289908725672396718080000*x^38 +3446340062218318299267072000*x^37 -12409743778368324350902272000*x^36 +32144544101639652703103877120*x^35 -63739623224842771994751467520*x^34 +100526156498120293361669455872*x^33 -129326381850884353971886854144*x^32 +138078181730156438217858923520*x^31 -123788362154790905517444399360*x^30
    +93876678485180434126091194176*x^29 -60428403800498502691099934400*x^28 +32981578627042728537763538064*x^27 -15149960622696298673159858800*x^26 +5745076159441010911548301660*x^25 -1713942189473347432159782004*x^24 +344138671691755284367114047*x^23 -5839405428890160900553740*x^22
    -32824622557763063660057790*x^21 +18176377898703093820133728*x^20 -6522560269430279741005099*x^19 +1814942458271772835455036*x^18 -411537276001965041120674*x^17 +77191887852380143515467*x^16 -11948748170525701008430*x^15 +1497118354975682972561*x^14
    -144192168126331827895*x^13 +9057386760969303803*x^12 -33939433225045648*x^11 -78967551758852587*x^10 +11947165597637555*x^9 -1090933373158527*x^8 +69435729107323*x^7 -3048021102033*x^6 +80222524613*x^5 -392852647*x^4 -54444097*x^3 +1857643*x^2 -18717*x -76) *x^13 / ((10*x-1) *(9*x-1)^2 *(8*x-1)^3 *(7*x-1)^4 *(6*x-1)^5 *(5*x-1)^6 *(4*x-1)^7 *(x-1)^7 *(3*x-1)^8 *(2*x-1)^9):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=13..30);

Formula

G.f.: see Maple program.

A241879 Number of ascent sequences of length n with exactly nine descents.

Original entry on oeis.org

13, 21366, 4578065, 429702983, 25034354941, 1061920763452, 35851255343461, 1018448322393201, 25273317588814845, 562618587861007357, 11458003977913501433, 216682231415882284146, 3849500164272613169698, 64843210660491264824949, 1043390054793718867256585
Offset: 14

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Comments

Recurrence is of 63 order with constant coefficients (see link below). - Fung Lam, May 07 2014

Crossrefs

Column k=9 of A238858.

A241880 Number of ascent sequences of length n with exactly ten descents.

Original entry on oeis.org

1, 10030, 4319226, 648334495, 54586013987, 3157647587689, 139956094477219, 5080107725520158, 157820345727409092, 4328163957695091489, 107185085092451745955, 2438347032119886770511, 51637001422611301449267, 1028741824925149047195935, 19445597194074945790332367
Offset: 15

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Comments

Recurrence is of 75 order with constant coefficients (see link below). - Fung Lam, May 07 2014

Crossrefs

Column k=10 of A238858.

A241881 Number of ascent sequences of length n with the maximal number of descents.

Original entry on oeis.org

1, 1, 2, 1, 7, 4, 1, 48, 26, 8, 1, 594, 262, 76, 13, 1, 10030, 3571, 933, 169, 19, 1, 205271, 61206, 14351, 2550, 323, 26, 1, 4910802, 1263620, 267378, 45321, 5918, 559, 34, 1, 134636523, 30534920, 5873492, 939681, 121689, 12257, 901, 43, 1, 4166817191
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 01 2014

Keywords

Comments

a(n*(n+1)/2) = a(A000217(n)) = 1.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(ji, 1, 0)), j=0..t+1)))
        end:
    a:= n-> (p-> coeff(p, x, degree(p)))(b(n, -1$2)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[ji, 1, 0]], {j, 0, t+1}]]]; a[n_] := Function[{p}, Coefficient[p, x, Exponent[ p, x ]]][b[n, -1, -1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 13 2015, after Maple *)

Formula

a(n) = A238858(n,Re(n-floor((sqrt(8*n-7)+1)/2))).
Previous Showing 11-15 of 15 results.