cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A239718 Primes of the form m = 8^i + 8^j - 1, where i > j >= 0.

Original entry on oeis.org

71, 4159, 32831, 262151, 266239, 294911, 2101247, 18874367, 134479871, 1073741831, 68721573887, 549755813951, 4398046515199, 4398046543871, 4398046773247, 4398063288319, 281474976711167, 281474976743423, 281474978807807, 281474993487871, 282024732524543
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-8 representation of a term 8^i + 8^j - 1 has base-8 digital sum = 1 + 7*j == 1 (mod 7).
In base-8 representation the first terms are 107, 10077, 100077, 1000007, 1007777, 1077777, 10007777, 107777777, 1000777777, 10000000007, 1000007777777, 10000000000077, 100000000007777, ...
Numbers m that satisfy m = 8^i + 8^j - 1 with odd i and j are not terms. Example: 33279 = 8^5 + 8^3 - 1 = 3*11093.

Examples

			a(1) = 71, since 71 = 8^2 + 8^1 - 1 is prime.
a(2) = 4159, since 4159 = 8^4 + 8^2 - 1 is prime.
		

Crossrefs

Cf. A018900, A239709, A239712 (base 2), A239713 (base 3), A239714 (base 4), A239715 (base 5), A239716 (base 6), A239717 (base 7), A239719 (base 9), A239720 (base 10).

Programs

  • Maple
    select(isprime, [seq(seq(8^i+8^j-1, j=0..i-1), i=1..25)])[];  # Alois P. Heinz, Dec 22 2024
  • Smalltalk
    A239718
      "Answers an array of the first n terms of A239718.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
    Usage: n A239718
    Answer: #(71 4159 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 8 withOffset: -1

A128898 Primes of form 2^j + 2^k - 1 or 2^j + 2^k + 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 67, 71, 73, 79, 97, 127, 131, 137, 191, 193, 257, 263, 271, 383, 521, 577, 641, 769, 1031, 1033, 1039, 1087, 1151, 1153, 1279, 2053, 2063, 2081, 2111, 2113, 4099, 4111, 4127, 4129, 4159, 5119, 6143, 8191, 8209
Offset: 1

Views

Author

J. M. Bergot, Apr 21 2007

Keywords

Comments

Union of A000668, A081091 and A239712. - Robert Israel, Jun 13 2018

Examples

			2^2 + 2^5 + 1 = 4 + 32 + 1 = 37 is prime, hence 37 is a term.
2^4 + 2^5 - 1 = 16 + 32 - 1 = 47 is prime, hence 47 is a term.
2^3 + 2^6 + 1 = 8 + 64 + 1 = 73 is prime, hence 73 is a term.
		

Crossrefs

Cf. A000668 (Mersenne primes), A092506 (primes of form 2^n + 1), A070739 (primes of form 2^x+2^y+1), A081091, A239712.

Programs

  • Maple
    sort(convert(select(isprime, {2,seq(seq(seq(2^i+2^j+k,k=[-1,1]),j=1..i),i=1..15)}),list)); # Robert Israel, Jun 13 2018
  • Mathematica
    lst = {}; Do[p = 2^a + 2^b; If[PrimeQ[p - 1], AppendTo[lst, p - 1]]; If[PrimeQ[p + 1], AppendTo[lst, p + 1]], {a, 0, 14}, {b, 0, a}]; Union@ lst (* Robert G. Wilson v *)
  • PARI
    {m=13; v=[]; for(j=0, m, for(k=j, m, if(isprime(p=2^j+2^k-1), v=concat(v, p)); if(isprime(p=2^j+2^k+1), v=concat(v,p)))); w=Vec(listsort(List(v), 1)); w} /* Klaus Brockhaus, Apr 22 2007 */

Extensions

Edited, corrected and extended by Klaus Brockhaus and Robert G. Wilson v, Apr 22 2007

A264908 Primes of the form 2^i + 2^j + 2^k - 1, i > j > k > 0.

Original entry on oeis.org

13, 37, 41, 43, 73, 83, 97, 103, 137, 139, 151, 163, 167, 193, 199, 223, 521, 523, 547, 577, 607, 641, 643, 647, 769, 1033, 1063, 1091, 1103, 1153, 1283, 1543, 1567, 1663, 2053, 2081, 2083, 2087, 2113, 2143, 2179, 2207, 2239, 2311, 2591, 2687, 3079, 3583, 4129, 4231, 4639
Offset: 1

Views

Author

Robert G. Wilson v, Nov 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Flatten[ Table[2^i + 2^j + 2^k - 1, {i, 3, 10}, {j, 2, i - 1}, {k, j - 1}]], PrimeQ]
Previous Showing 11-13 of 13 results.