cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A244160 a(0)=0, and for n >= 1, a(n) = the largest k such that k-th Catalan number <= n.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2014

Keywords

Comments

Apart from 0, each n occurs A000245(n) times.
For n >= 1, a(n) gives the largest k such that C(k) <= n, where C(k) stands for the k-th Catalan number, A000108(k).

Examples

			For n=1, the largest k such that C(k) <= 1 is 1, thus a(1) = 1.
For n=2, the largest k such that C(k) <= 2 is 2, thus a(2) = 2.
For n=3, the largest k such that C(k) <= 3 is 2, thus a(3) = 2.
For n=4, the largest k such that C(k) <= 4 is 2, thus a(4) = 2.
For n=5, the largest k such that C(k) <= 5 is 3, thus a(5) = 3.
		

Crossrefs

After zero, one less than A081288.

Programs

  • Mathematica
    MapIndexed[ConstantArray[First@ #2 - 1, #1] &, Differences@ Array[CatalanNumber, 8, 0]] /. {} -> {0} // Flatten (* Michael De Vlieger, Jun 08 2017 *)
    Join[{0},Table[PadRight[{},CatalanNumber[n+1]-CatalanNumber[n],n],{n,6}]// Flatten] (* Harvey P. Dale, Aug 23 2021 *)
  • Python
    from sympy import catalan
    def a(n):
        if n==0: return 0
        i=1
        while True:
            if catalan(i)>n: break
            else: i+=1
        return i - 1
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (define (A244160 n) (if (zero? n) n (- (A081288 n) 1)))
    

Formula

a(0) = 0, and for n>=1, a(n) = A081288(n)-1.
For all n>=1, A000108(a(n)) = A081290(n).

A370222 Irregular triangle T(n,k) read by rows: row n gives the inversion table (see comments) of the permutation encoded by row n of A370221.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 2, 0, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Paolo Xausa, Feb 12 2024

Keywords

Comments

Knuth (2011) uses the inversion table c_1, c_2, ..., c_k (defined so that exactly c_k elements to the right of k are less than k) to encode the permutation given by row n of A370221.
This way c_1 = 0 and 0 <= c_(k+1) <= c_k + 1 for 1 <= k < m, where m >= 1 is half the length of the corresponding properly nested string of parentheses (see example).
The concatenation of terms in each row from row n = 23714 to 82498 (corresponding to strings of length 22, excluding the last one) gives the A000108(11) - 1 = 58785 terms of the finite sequence A239903.

Examples

			The following table lists c_k values for properly nested strings having lengths up to 8, along with d_k, z_k and p_k values from related combinatorial objects (see related sequences for more information). Cf. Knuth (2011), p. 442, Table 1.
.
      | Properly |          | A370219 | A370220 | A370221 |
      | Nested   | A063171  | d d d d | z z z z | p p p p | c c c c
    n | String   |   (n)    | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4
  ----+----------+----------+---------+---------+---------+---------
    1 | ()       | 10       | 1       | 1       | 1       | 0
    2 | ()()     | 1010     | 1 1     | 1 3     | 1 2     | 0 0
    3 | (())     | 1100     | 0 2     | 1 2     | 2 1     | 0 1
    4 | ()()()   | 101010   | 1 1 1   | 1 3 5   | 1 2 3   | 0 0 0
    5 | ()(())   | 101100   | 1 0 2   | 1 3 4   | 1 3 2   | 0 0 1
    6 | (())()   | 110010   | 0 2 1   | 1 2 5   | 2 1 3   | 0 1 0
    7 | (()())   | 110100   | 0 1 2   | 1 2 4   | 2 3 1   | 0 1 1
    8 | ((()))   | 111000   | 0 0 3   | 1 2 3   | 3 2 1   | 0 1 2
    9 | ()()()() | 10101010 | 1 1 1 1 | 1 3 5 7 | 1 2 3 4 | 0 0 0 0
   10 | ()()(()) | 10101100 | 1 1 0 2 | 1 3 5 6 | 1 2 4 3 | 0 0 0 1
   11 | ()(())() | 10110010 | 1 0 2 1 | 1 3 4 7 | 1 3 2 4 | 0 0 1 0
   12 | ()(()()) | 10110100 | 1 0 1 2 | 1 3 4 6 | 1 3 4 2 | 0 0 1 1
   13 | ()((())) | 10111000 | 1 0 0 3 | 1 3 4 5 | 1 4 3 2 | 0 0 1 2
   14 | (())()() | 11001010 | 0 2 1 1 | 1 2 5 7 | 2 1 3 4 | 0 1 0 0
   15 | (())(()) | 11001100 | 0 2 0 2 | 1 2 5 6 | 2 1 4 3 | 0 1 0 1
   16 | (()())() | 11010010 | 0 1 2 1 | 1 2 4 7 | 2 3 1 4 | 0 1 1 0
   17 | (()()()) | 11010100 | 0 1 1 2 | 1 2 4 6 | 2 3 4 1 | 0 1 1 1
   18 | (()(())) | 11011000 | 0 1 0 3 | 1 2 4 5 | 2 4 3 1 | 0 1 1 2
   19 | ((()))() | 11100010 | 0 0 3 1 | 1 2 3 7 | 3 2 1 4 | 0 1 2 0
   20 | ((())()) | 11100100 | 0 0 2 2 | 1 2 3 6 | 3 2 4 1 | 0 1 2 1
   21 | ((()())) | 11101000 | 0 0 1 3 | 1 2 3 5 | 3 4 2 1 | 0 1 2 2
   22 | (((()))) | 11110000 | 0 0 0 4 | 1 2 3 4 | 4 3 2 1 | 0 1 2 3
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444.

Crossrefs

Cf. A000108, A063171, A072643 (row lengths), A239903.
Cf. A370219, A370220, A370221, A370292 (row sums).

Programs

  • Mathematica
    clist[m_] := With[{r = 2*Range[2, m]-1}, Reverse[Map[Join[{0}, r-#] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] >= 0 &]]]];
    Array[Delete[clist[#], 0] &, 5]
    (* 2nd program: uses Algorithm Z from Knuth's TAOCP section 7.2.1.6, exercise 2 *)
    zlist[m_] := Block[{z = 2*Range[m] - 1, j},
        Reap[
        While[True,
            Sow[z];
            If[z[[m-1]] < z[[m]] - 1,
                z[[m]]--,
                j = m - 1; z[[m]] = 2*m - 1;
                While[j > 1 && z[[j-1]] == z[[j]] - 1, z[[j]] = 2*j - 1; j--];
                If[j == 1,Break[]];
                z[[j]]--]
        ]][[2]][[1]]];
    Join[{{0}}, Table[Delete[Map[2*Range[n] - 1 - # &, zlist[n]], 0], {n, 2, 5}]] (* Paolo Xausa, Mar 25 2024 *)

Formula

T(n,k) = 2*k - 1 - A370220(n,k).

A237449 a(n) = n - A236855(n).

Original entry on oeis.org

0, 0, 1, 1, 1, 4, 4, 5, 5, 5, 7, 7, 7, 7, 13, 13, 14, 14, 14, 17, 17, 18, 18, 18, 20, 20, 20, 20, 25, 25, 26, 26, 26, 28, 28, 28, 28, 31, 31, 31, 31, 31, 41, 41, 42, 42, 42, 45, 45, 46, 46, 46, 48, 48, 48, 48, 54, 54, 55, 55, 55, 58, 58, 59, 59, 59, 61, 61, 61, 61
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2014

Keywords

Crossrefs

Programs

  • Mathematica
    A236855list[m_] := With[{r = 2*Range[2, m]-1}, Reverse[Map[Total[r-#] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] >= 0 &]]]];
    With[{m = 6}, Range[0, CatalanNumber[m]-1] - A236855list[m]] (* Generates C(m) terms *) (* Paolo Xausa, Feb 20 2024 *)
  • Scheme
    (define (A237449 n) (- n (A236855 n)))

Formula

a(n) = n - A236855(n).
Previous Showing 11-13 of 13 results.