cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A271170 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(3) (negated).

Original entry on oeis.org

0, 2, 0, 6, 5, 6, 3, 5, 4, 1, 3, 5, 5, 5, 2, 0, 7, 8, 9, 2, 2, 1, 9, 4, 7, 5, 1, 9, 8, 8, 1, 9, 1, 6, 2, 0, 6, 7, 3, 4, 4, 2, 2, 1, 7, 5, 2, 0, 0, 7, 3, 2, 8, 4, 8, 3, 7, 2, 2, 4, 8, 0, 1, 0, 0, 1, 1, 0, 2, 2, 7, 9, 7, 7, 5, 7, 0, 1, 8, 4, 7, 3, 6, 3, 8, 7, 2, 8, 8, 1, 6, 4, 8, 6, 0, 3
Offset: 0

Views

Author

G. C. Greubel, Apr 01 2016

Keywords

Comments

The logarithm of the third Bendersky constant.

Examples

			-0.02065635413555207892219475198819162067344221752007...
		

Crossrefs

log(A(b)): A225746 (b=1), (-1) * A240966 (b=2).

Programs

  • Mathematica
    Join[{0}, RealDigits[(BernoulliB[4]/4)*(EulerGamma + Log[2*Pi] - Zeta'[4]/Zeta[4]), 10, 100] // First]

Formula

Equals (Bernoulli(4)/4)*(EulerGamma + log(2*Pi) - (Zeta'(4)/Zeta(4))).
log(A(3)) = HarmonicNumber(3)*Bernoulli(4)/4 - Zeta'(-3).

A271854 Decimal expansion of -zeta'(-1/2), negated derivative of the Riemann zeta function at -1/2.

Original entry on oeis.org

3, 6, 0, 8, 5, 4, 3, 3, 9, 5, 9, 9, 9, 4, 7, 6, 0, 7, 3, 4, 7, 4, 2, 0, 8, 0, 6, 3, 6, 3, 9, 5, 1, 0, 6, 5, 8, 8, 4, 8, 5, 2, 7, 8, 7, 9, 1, 8, 6, 3, 2, 2, 1, 0, 8, 1, 4, 3, 7, 6, 2, 8, 1, 2, 7, 5, 8, 0, 8, 1, 0, 6, 1, 2, 6, 6, 5, 6, 5, 1, 0, 3, 0, 9, 5, 7, 3, 3, 0, 8, 5, 0, 8, 3, 0, 9, 1, 6, 0, 2, 8, 5, 0, 8, 1
Offset: 0

Views

Author

Stanislav Sykora, Apr 23 2016

Keywords

Examples

			zeta'(-1/2) = -0.36085433959994760734742080636395106588485278791863221...
		

Crossrefs

Values of |zeta'(x)| for various x: A073002 (+2), A075700 (0), A084448 (-1), A114875 (+1/2), A240966 (-2), A244115(+3), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8), A261506 (+4), A266260 (-9), A266261 (-10), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266270 (zeta'(-15)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)), A271521 (i).

Programs

  • Mathematica
    RealDigits[N[-Zeta'[-1/2], 106]] [[1]] (* Robert Price, Apr 28 2016 *)
  • PARI
    -zeta'(-1/2)

A324992 Decimal expansion of zeta'(-1, 1/2).

Original entry on oeis.org

0, 5, 3, 8, 2, 9, 4, 3, 9, 3, 2, 6, 8, 9, 4, 4, 1, 0, 0, 4, 7, 9, 0, 8, 4, 9, 1, 7, 2, 7, 2, 9, 9, 6, 3, 1, 0, 4, 5, 5, 3, 9, 0, 1, 7, 9, 0, 2, 5, 9, 0, 2, 5, 6, 2, 4, 4, 8, 9, 9, 4, 8, 6, 1, 1, 6, 4, 5, 5, 1, 1, 5, 5, 8, 4, 5, 5, 1, 3, 0, 6, 5, 6, 2, 8, 5, 1, 5, 7, 8, 2, 0, 8, 0, 7, 0, 2, 6, 5, 7, 8, 8, 2, 7, 1, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			0.053829439326894410047908491727299631045539017902590256244899486116455...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,1/2), 120);
    evalf(-log(2)/24 - Zeta(1,-1)/2, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 1/2], 10, 120][[1]]
    N[With[{k=1}, -BernoulliB[2*k] * Log[2] / 4^k / k - (2^(2*k - 1) - 1) * Zeta'[1 - 2*k] / 2^(2*k - 1)], 120]
  • PARI
    zetahurwitz'(-1, 1/2) \\ Michel Marcus, Mar 24 2019

Formula

Equals -log(2)/24 - Zeta'(-1)/2 = A261829 - log(2)/24.
Equals -1/24 - log(2)/24 + log(A)/2, where A is the Glaisher-Kinkelin constant A074962.
Equals (log(Pi) - 1 + gamma)/24 - Zeta'(2)/(4*Pi^2), where gamma is the Euler-Mascheroni constant A001620.
Previous Showing 21-23 of 23 results.