A281479
Central coefficients of the polynomials defined in A278073.
Original entry on oeis.org
1, 1, 1364, 42771456, 10298900437056, 11287986820196486400, 41397337338743872194508800, 414528538783792919989135797964800, 9808376038359632185170127842947907993600, 492228239722024416239987973400425228541016064000
Offset: 0
A281480
Central coefficients of the polynomials defined in A278074.
Original entry on oeis.org
1, 1, 16510, 17651304000, 286988816206755000, 35284812773848049161035000, 21735699944364325706210750640600000, 51125456932397825107093888817556205542000000, 378603085421985456745667562645258531056443927230000000, 7641597761030055776217194099395682779700673105680593973250000000
Offset: 0
A088874
T(n, k) = [x^k] (2*n)! [z^(2*n)] 1/cos(z)^x, triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 16, 30, 15, 0, 272, 588, 420, 105, 0, 7936, 18960, 16380, 6300, 945, 0, 353792, 911328, 893640, 429660, 103950, 10395, 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 0, 1903757312
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 3
[3] 0, 16, 30, 15
[4] 0, 272, 588, 420, 105
[5] 0, 7936, 18960, 16380, 6300, 945
[6] 0, 353792, 911328, 893640, 429660, 103950, 10395
[7] 0, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) #09.7.6.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles , JIS 9 (2006) #06.4.1.
- Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
-
ser := series(sec(z)^x, z, 24): row := n -> n!*coeff(ser, z, n):
seq(seq(coeff(row(2*n), x, k), k=0..n), n=0..8); # Peter Luschny, Jul 01 2019
-
T[1, 1] = 1; T[n_, k_] := Sum[(1/2^(j-1))*StirlingS1[j, k-1]*Sum[(-1)^(i + k + n)*(i-j)^(2(n-1)) Binomial[2j, i], {i, 0, j-1}]/j!, {j, 1, n-1}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018, after Vladimir Kruchinin *)
a[n_] := (2n)! SeriesCoefficient[Sec[z]^x, {z, 0, 2n}] // CoefficientList[#, x] &;
Table[a[n], {n, 0, 8}] // Flatten (* Peter Luschny, Jul 01 2019 *)
-
# uses [A241171]
def fr2_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
L = expand(S).list()
return sum(L[k]*binomial(x+k, n) for k in (0..n-1)).list()
A088874_row = lambda n: [(-1)^(n-k)*m for k,m in enumerate(fr2_row(n))]
for n in (0..7): print(A088874_row(n)) # Peter Luschny, Sep 19 2017
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A327022
Partition triangle read by rows. Number of ordered set partitions of the set {1, 2, ..., 2*n} with all block sizes divisible by 2.
Original entry on oeis.org
1, 1, 1, 6, 1, 30, 90, 1, 56, 70, 1260, 2520, 1, 90, 420, 3780, 9450, 75600, 113400, 1, 132, 990, 924, 8910, 83160, 34650, 332640, 1247400, 6237000, 7484400, 1, 182, 2002, 6006, 18018, 270270, 252252, 630630, 1081080, 15135120, 12612600, 37837800, 189189000, 681080400, 681080400
Offset: 0
Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1; 6]
[3] [1; 30; 90]
[4] [1; 56, 70; 1260; 2520]
[5] [1; 90, 420; 3780, 9450; 75600; 113400]
[6] [1; 132, 990, 924; 8910, 83160, 34650; 332640, 1247400; 6237000; 7484400]
.
T(4, 1) = 56 because [6, 2] is the integer partition 2*P(4, 1) in the canonical order and there are 28 set partitions which have the shape [6, 2] (an example is {{1, 3, 4, 5, 6, 8}, {2, 7}}). Finally, since the order of the sets is taken into account, one gets 2!*28 = 56.
-
def GenOrdSetPart(m, n):
shapes = ([x*m for x in p] for p in Partitions(n))
return [factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes]
def A327022row(n): return GenOrdSetPart(2, n)
for n in (0..6): print(A327022row(n))
A326477
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
-
CL := f -> PolynomialTools:-CoefficientList(f, x):
FL := s -> ListTools:-Flatten(s, 1):
StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
`if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
FL([seq(StirPochConv(2,n), n = 0..7)]);
-
P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
-
def StirPochConv(m, n):
z = var('z'); R = ZZ[x]
F = [i/m for i in (1..m-1)]
H = hypergeometric([], F, (z/m)^m)
P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
L = P.list()
S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
return expand(S).list()
for n in (0..6): print(StirPochConv(2, n))
A326585
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 4 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 36, 35, 0, 12046, 17820, 5775, 0, 16674906, 30263480, 16216200, 2627625, 0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625, 0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 36, 35]
[3] [0, 12046, 17820, 5775]
[4] [0, 16674906, 30263480, 16216200, 2627625]
[5] [0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625]
[6] [0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875]
A326587
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 3 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 11, 10, 0, 645, 924, 280, 0, 111563, 197802, 101640, 15400, 0, 42567981, 86271640, 57717660, 15415400, 1401400, 0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400
Offset: 0
Triangle starts:
0 [1]
1 [0, 1]
2 [0, 11, 10]
3 [0, 645, 924, 280]
4 [0, 111563, 197802, 101640, 15400]
5 [0, 42567981, 86271640, 57717660, 15415400, 1401400]
6 [0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400]
Original entry on oeis.org
90, 1260, 13230, 126720, 1171170, 10663380, 96461910, 870123240, 7838973450, 70582218300, 635365793790, 5718795460560, 51471172410930, 463248604762020, 4169269655112870, 37523555745034680, 337712517101387610, 3039414715496790540, 27354740685808323150, 246192699157623741600, 2215734424360009007490
Offset: 0
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
A318259
Generalized Worpitzky numbers W_{m}(n,k) for m = 2, n >= 0 and 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, -1, 1, 5, -11, 6, -61, 211, -240, 90, 1385, -6551, 11466, -8820, 2520, -50521, 303271, -719580, 844830, -491400, 113400, 2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400, -199360981, 1704396331, -6187282920, 12372329970, -14727913200, 10443232800, -4086482400, 681080400
Offset: 0
[0] [ 1]
[1] [ -1, 1]
[2] [ 5, -11, 6]
[3] [ -61, 211, -240, 90]
[4] [ 1385, -6551, 11466, -8820, 2520]
[5] [ -50521, 303271, -719580, 844830, -491400, 113400]
[6] [2702765, -19665491, 58998126, -93511440, 82661040, -38669400, 7484400]
-
Joffe := proc(n, k) option remember; if k > n then 0 elif k = 0 then k^n else
k*(2*k-1)*Joffe(n-1, k-1)+k^2*Joffe(n-1, k) fi end:
T := (n, k) -> add((-1)^(k-j)*binomial(n-j, n-k)*add((-1)^i*Joffe(n,i)*
binomial(n-i, j), i=0..n), j=0..k):
seq(seq(T(n, k), k=0..n), n=0..6);
-
Joffe[0, 0] = 1; Joffe[n_, k_] := Joffe[n, k] = If[k>n, 0, If[k == 0,k^n, k*(2*k-1)*Joffe[n-1, k-1] + k^2*Joffe[n-1, k]]];
T[n_, k_] := Sum[(-1)^(k-j)*Binomial[n-j, n-k]*Sum[(-1)^i*Joffe[n, i]* Binomial[n-i, j], {i, 0, n}], {j, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2019, from Maple *)
-
def EW(m, n):
@cached_function
def S(m, n):
R. = ZZ[]
if n == 0: return R(1)
return R(sum(binomial(m*n, m*k)*S(m, n-k)*x for k in (1..n)))
s = S(m, n).list()
c = lambda k: sum((-1)^(k-j)*binomial(n-j,n-k)*
sum((-1)^i*s[i]*binomial(n-i,j) for i in (0..n)) for j in (0..k))
return [c(k) for k in (0..n)]
def A318259row(n): return EW(2, n)
flatten([A318259row(n) for n in (0..6)])
Comments