A246564 The n-th least-significant decimal digit of n^^n (in Don Knuth's up-arrow notation).
1, 0, 9, 2, 0, 2, 5, 3, 3, 0, 7, 8, 5, 6, 6, 7, 8, 3, 1, 0, 1, 7, 8, 8, 7, 8, 6, 2, 4, 0, 9, 8, 0, 3, 0, 3, 5, 6, 7, 0, 6, 5, 2, 0, 1, 0, 7, 5, 3, 0, 2, 9, 5, 8, 3, 6, 8, 7, 0, 0, 7, 3, 7, 3, 0, 8, 4, 0, 8, 0, 7, 6, 8, 0, 3, 0, 6, 7, 1, 0, 7, 7, 2, 8, 5, 7, 9, 7, 3, 0, 0, 9, 3, 6, 6, 3, 4, 2, 1, 0, 5, 9, 8, 8, 6
Offset: 1
References
- George T. Gilbert, Mark I. Krusemeyer and Loren C. Larson, The Wohascum County Problem Book, The Mathematical Association of America, Dolciani Mathematical Expositions No. 14, 1993, problem 41 "What is the fifth digit from the end (the ten thousands digit) of the number 5^5^5^5^5?", page 11 and solution on page 76.
- Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
- Robert P. Munafo, Sequence A094358, 2^^N = 1 mod N.
- Robert P. Munafo, Hyper4 Iterated Exponential Function.
- Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi.
- Wikipedia, Knuth's up-arrow notation.
- Index entries for sequences related to Benford's law
Programs
-
Mathematica
(* first load "SuperPowerMod" from Vardi, see link above, and then *) f[n_] := Quotient[ SuperPowerMod[ n, n, 10^n], 10^(n - 1)]; Array[f, 105]
Formula
if n (mod 10) == 0 then a(n) = 0.
Comments