cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A241464 Number of simple connected graphs g on n nodes with |Aut(g)| = 36.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 16, 132, 1341
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241465 Number of simple connected graphs g on n nodes with |Aut(g)| = 48.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 14, 65, 504, 5215
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241466 Number of simple connected graphs g on n nodes with |Aut(g)| = 72.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 16, 124, 1070
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241467 Number of simple connected graphs g on n nodes with |Aut(g)| = 120.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 5, 21, 211
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241468 Number of simple connected graphs g on n nodes with |Aut(g)| = 144.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 12, 51, 477
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241469 Number of simple connected graphs g on n nodes with |Aut(g)| = 240.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 8, 51, 336
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241470 Number of simple connected graphs g on n nodes with |Aut(g)| = 720.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 4, 13, 60
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A241471 Number of simple connected graphs g on n nodes with |Aut(g)| = 5040.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 5
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 25 2014

Keywords

Crossrefs

Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471.

A330297 Number of labeled simple graphs covering n vertices with exactly two automorphisms, or with exactly n!/2 graphs obtainable by permuting the vertices.

Original entry on oeis.org

0, 0, 1, 3, 24, 540, 13320
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

These are graphs with exactly one involution and no other symmetries.

Examples

			The a(4) = 24 graphs:
  {12,13,24}  {12,13,14,23}
  {12,13,34}  {12,13,14,24}
  {12,14,23}  {12,13,14,34}
  {12,14,34}  {12,13,23,24}
  {12,23,34}  {12,13,23,34}
  {12,24,34}  {12,14,23,24}
  {13,14,23}  {12,14,24,34}
  {13,14,24}  {12,23,24,34}
  {13,23,24}  {13,14,23,34}
  {13,24,34}  {13,14,24,34}
  {14,23,24}  {13,23,24,34}
  {14,23,34}  {14,23,24,34}
		

Crossrefs

The non-covering version is A330345.
The unlabeled version is A330346 (not A241454).
Covering simple graphs are A006129.
Covering graphs with exactly one automorphism are A330343.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[graprms[#]]==n!/2&]],{n,0,5}]

Formula

a(n) = n!/2 * A330346(n).

A330344 Number of unlabeled graphs with n vertices whose covered portion has exactly two automorphisms.

Original entry on oeis.org

0, 1, 2, 4, 13, 50, 367
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 graphs:
  {12}  {12}     {12}           {12}
        {12,13}  {12,13}        {12,13}
                 {12,13,24}     {12,13,24}
                 {12,13,14,23}  {12,13,14,23}
                                {12,13,14,25}
                                {12,13,24,35}
                                {12,13,14,23,25}
                                {12,13,14,23,45}
                                {12,13,15,24,34}
                                {12,13,14,15,23,24}
                                {12,13,14,23,24,35}
                                {12,13,14,23,25,45}
                                {12,13,14,15,23,24,35}
		

Crossrefs

The labeled version is A330345.
The covering case is A330346 (not A241454).
Unlabeled graphs are A000088.
Unlabeled graphs with exactly one automorphism are A003400.
Unlabeled connected graphs with exactly one automorphism are A124059.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Formula

Partial sums of A330346.
Previous Showing 11-20 of 23 results. Next