cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A241699 Number of Carlitz compositions of n with exactly nine descents.

Original entry on oeis.org

55, 491, 2689, 11608, 42795, 140589, 422681, 1183166, 3121247, 7830626, 18812643, 43515886, 97340687, 211323653, 446587109, 921008294, 1857606992, 3670974168, 7119426996, 13569286673, 25448188412, 47013582854, 85641353036, 153964392218, 273387455379
Offset: 27

Views

Author

Alois P. Heinz, Apr 27 2014

Keywords

Comments

No two adjacent parts of a Carlitz composition are equal.

Crossrefs

Column k=9 of A241701.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
           convert(series(add(`if`(i=j, 0, b(n-j, j)*
          `if`(j coeff(b(n, 0), x, 9):
    seq(a(n), n=27..55);

A241700 Number of Carlitz compositions of n with exactly ten descents.

Original entry on oeis.org

89, 874, 5176, 23882, 93525, 324959, 1029660, 3029025, 8377958, 21992465, 55185174, 133116640, 310082552, 700123670, 1536990597, 3289297465, 6877652389, 14077255217, 28252887221, 55681517610, 107900601488, 205825555915, 386884938126, 717249234951
Offset: 30

Views

Author

Alois P. Heinz, Apr 27 2014

Keywords

Comments

No two adjacent parts of a Carlitz composition are equal.

Crossrefs

Column k=10 of A241701.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
           convert(series(add(`if`(i=j, 0, b(n-j, j)*
          `if`(j coeff(b(n, 0), x, 10):
    seq(a(n), n=30..55);

A285994 Number of increasing runs in all Carlitz compositions of n.

Original entry on oeis.org

0, 1, 1, 4, 6, 11, 26, 46, 84, 167, 313, 576, 1086, 2016, 3710, 6876, 12660, 23196, 42542, 77798, 141910, 258648, 470558, 854644, 1550588, 2809620, 5084588, 9192349, 16601714, 29953754, 53997062, 97257129, 175033355, 314771224, 565664138, 1015841191
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2017

Keywords

Comments

No two adjacent parts of a Carlitz composition are equal.

Examples

			a(1) = 1: (1).
a(2) = 1: (2).
a(3) = 4: (12), (2)(1), (3).
a(4) = 6: (12)(1), (13), (3)(1), (4).
a(5) = 11: (2)(12), (13)(1), (23), (3)(2), (14), (4)(1), (5).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, [1, 0], add(`if`(j=l, 0,
          (p-> p+`if`(j>l, [0, p[1]], 0))(b(n-j, j))), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, {1, 0}, Sum[If[j == l, {0, 0}, Function[p, p + If[j > l, {0, p[[1]]}, 0]][b[n - j, j]]], {j, 1, n}]];
    a[n_] := b[n, 0][[2]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..floor(n/3)} (k+1) * A241701(n,k) for n>0, a(0) = 0.
Previous Showing 11-13 of 13 results.