cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A347974 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_8)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 17, 17, 1, 1, 47, 242, 47, 1, 1, 113, 3071, 3071, 113, 1, 1, 245, 34477, 232290, 34477, 245, 1, 1, 491, 341633, 16665755, 16665755, 341633, 491, 1, 1, 920, 3022045, 1073874283, 8241549097, 1073874283, 3022045, 920, 1, 1, 1635, 24145695
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5
      --------------------------
n=0:  1
n=1:  1    1
n=2:  1    5    1
n=3:  1   17   17    1
n=4:  1   47  242   47    1
n=5:  1  113 3071 3071  113    1
There are 9 = A022172(2, 1) one-dimensional subspaces in (F_8)^2. Among them, <(1, 1)> is invariant by coordinate swap and the rest are grouped in orbits of size two. Hence, T(2, 1) = 5.
		

Crossrefs

Formula

T(n, 1) = T(n - 1, 1) + A032192(n + 7).

A347975 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_9)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 64, 374, 64, 1, 1, 163, 5900, 5900, 163, 1, 1, 380, 82587, 644680, 82587, 380, 1, 1, 809, 1018388, 66136870, 66136870, 1018388, 809, 1, 1, 1619, 11174165, 6057912073, 52901629980, 6057912073, 11174165, 1619, 1, 1, 3049, 110404788
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q-1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5
      --------------------------
n=0:  1
n=1:  1    1
n=2:  1    6    1
n=3:  1   21   21    1
n=4:  1   64  374   64    1
n=5:  1  163 5900 5900  163    1
There are 10 = A022173(2, 1) one-dimensional subspaces in (F_9)^2. Among them, <(1, 1)> and <(1, 2)> are invariant by coordinate swap and the rest are grouped in orbits of size two. Hence, T(2, 1) = 6.
		

Crossrefs

Formula

T(n, 1) = T(n-1, 1) + A032193(n+8).

A322596 Square array read by descending antidiagonals (n >= 0, k >= 0): let b(n,k) = (n+k)!/((n+1)!*k!); then T(n,k) = b(n,k) if b(n,k) is an integer, and T(n,k) = floor(b(n,k)) + 1 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 9, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 21, 26, 21, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 42, 66, 77, 66, 42, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, T(n,k) is the number of nodes in n-dimensional space for Mysovskikh's cubature formula which is exact for any polynomial of degree k of n variables.

Examples

			Array begins:
  1, 1, 1,  1,  1,   1,   1,    1,    1,    1, ...
  1, 1, 2,  2,  3,   3,   4,    4,    5,    5, ...
  1, 1, 2,  4,  5,   7,  10,   12,   15,   19, ...
  1, 1, 3,  5,  9,  14,  21,   30,   42,   55, ...
  1, 1, 3,  7, 14,  26,  42,   66,   99,  143, ...
  1, 1, 4, 10, 21,  42,  77,  132,  215,  334, ...
  1, 1, 4, 12, 30,  66, 132,  246,  429,  715, ...
  1, 1, 5, 15, 42,  99, 215,  429,  805, 1430, ...
  1, 1, 5, 19, 55, 143, 334,  715, 1430, 2702, ...
  1, 1, 6, 22, 72, 201, 501, 1144, 2431, 4862, ...
  ...
As triangular array, this begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  1,  1;
  1, 2,  2,  1,  1;
  1, 3,  4,  3,  1,  1;
  1, 3,  5,  5,  3,  1,  1;
  1, 4,  7,  9,  7,  4,  1,  1;
  1, 4, 10, 14, 14, 10,  4,  1, 1;
  1, 5, 12, 21, 26, 21, 12,  5, 1, 1;
  1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1;
  ...
		

Crossrefs

Programs

  • Maxima
    b(n, k) := (n + k)!/((n + 1)!*k!)$
    T(n, k) := if integerp(b(n, k)) then b(n, k) else floor(b(n, k)) + 1$
    create_list(T(k, n - k), n, 0, 15, k, 0, n);
Previous Showing 11-13 of 13 results.