cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A242160 Number of ascent sequences of length n with exactly seven flat steps.

Original entry on oeis.org

1, 8, 72, 600, 5280, 48312, 465036, 4708704, 50160825, 561623920, 6600378928, 81297463104, 1047817553016, 14109488456400, 198192170408400, 2899804394683680, 44131025207930595, 697636040687261280, 11441167306954104500, 194421818718469399200
Offset: 8

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=7 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 7]; Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(23/2) / (7! * 6^5 * sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242161 Number of ascent sequences of length n with exactly eight flat steps.

Original entry on oeis.org

1, 9, 90, 825, 7920, 78507, 813813, 8828820, 100321650, 1193450830, 14850852588, 193081474872, 2619543882540, 37037407198050, 545028468623100, 8336937634715580, 132393075623791785, 2180112627147691500, 37183793747600839625, 656173638174834222300
Offset: 9

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=8 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 8]; Table[a[n], {n, 9, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(27/2) / (8! * 6^6 * sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242162 Number of ascent sequences of length n with exactly nine flat steps.

Original entry on oeis.org

1, 10, 110, 1100, 11440, 122122, 1356355, 15695680, 189496450, 2386901660, 31351799908, 429069944160, 6112269059260, 90535884261900, 1392850530925700, 22231833692574880, 367758543399421625, 6298103145093331000, 111551381242802518875, 2041429096543928691600
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=9 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 9]; Table[a[n], {n, 10, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(31/2) / (9! * 6^7 * sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242163 Number of ascent sequences of length n with exactly ten flat steps.

Original entry on oeis.org

1, 11, 132, 1430, 16016, 183183, 2170168, 26682656, 341093610, 4535113154, 62703599816, 901046882736, 13446991930372, 208232533802370, 3342841274221680, 55579584231437200, 956172212838496225, 17004878491751993700, 312343867479847052850, 5920144379977393205640
Offset: 11

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Crossrefs

Column k=10 of A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[n, -1, -1], x, 10]; Table[a[n], {n, 11, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) ~ Pi^(35/2) / (10! * 6^8 * sqrt(3)*exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

A242164 Number of ascent sequences of length 2n with exactly n flat steps.

Original entry on oeis.org

1, 1, 3, 20, 175, 2016, 28182, 465036, 8828820, 189496450, 4535113154, 119706872376, 3454013050488, 108140144894600, 3650830138093500, 132194177662402800, 5110163818369981650, 210037720563156731850, 9146299175093615073000, 420627290039763259876500
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Examples

			a(0) = 1: the empty sequence.
a(1) = 1: [0,0].
a(2) = 3: [0,0,0,1], [0,0,1,1], [0,1,1,1].
a(3) = 20: [0,0,0,0,1,0], [0,0,0,0,1,2], [0,0,0,1,0,0], [0,0,0,1,1,0], [0,0,0,1,1,2], [0,0,0,1,2,2], [0,0,1,0,0,0], [0,0,1,1,0,0], [0,0,1,1,1,0], [0,0,1,1,1,2], [0,0,1,1,2,2], [0,0,1,2,2,2], [0,1,0,0,0,0], [0,1,1,0,0,0], [0,1,1,1,0,0], [0,1,1,1,1,0], [0,1,1,1,1,2], [0,1,1,1,2,2], [0,1,1,2,2,2], [0,1,2,2,2,2].
		

Crossrefs

Cf. A242153.

Programs

  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[2n, -1, -1], x, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)

Formula

a(n) = A242153(2n,n).
a(n) ~ 6*sqrt(3) / (Pi^3 * exp(Pi^2/12)) * (24/Pi^2)^n * n!. - Vaclav Kotesovec, Aug 28 2014

A193548 Decimal expansion of exp(Pi^2/12).

Original entry on oeis.org

2, 2, 7, 6, 1, 0, 8, 1, 5, 1, 6, 2, 5, 7, 3, 4, 0, 9, 4, 7, 9, 1, 0, 6, 1, 4, 1, 2, 0, 3, 1, 4, 9, 7, 4, 4, 6, 6, 9, 7, 9, 7, 4, 2, 6, 0, 3, 0, 0, 2, 3, 7, 7, 5, 6, 1, 5, 5, 1, 6, 1, 7, 0, 9, 8, 2, 7, 5, 0, 6, 3, 7, 2, 8, 6, 3, 0, 1, 4, 3, 1, 8, 6, 6, 8, 4, 6, 5, 7
Offset: 1

Views

Author

John M. Campbell, Jul 30 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Product[Product[k^((1/(n+1))*(-1)^(k)*Binomial[n,k-1]*HarmonicNumber[n]),{k,1,n+1}],{n,1,Infinity}]
    RealDigits[E^(Pi^2/12), 10, 100]
  • PARI
    exp(Pi^2/12) \\ Charles R Greathouse IV, Jul 30 2011

Formula

exp(Pi^2/12) = Product_{n>=1} Product_{k=1..n+1} k^(1/(n+1)) * H(n) * (-1)^k * binomial(n, k-1) where H(n) is the n-th harmonic number.
exp(Pi^2/12) = lim_{n -> infinity} Product_{k=1..n} (1 + k/n)^(1/k). - Peter Bala, Feb 14 2015
Previous Showing 11-16 of 16 results.