cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A242529 Number of cyclic arrangements (up to direction) of numbers 1,2,...,n such that any two neighbors are coprime.

Original entry on oeis.org

1, 1, 1, 1, 6, 2, 36, 36, 360, 288, 11016, 3888, 238464, 200448, 3176496, 4257792, 402573312, 139511808, 18240768000, 11813990400, 440506183680, 532754620416, 96429560832000, 32681097216000, 5244692024217600, 6107246661427200, 490508471914905600, 468867166554931200, 134183696369843404800
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S={1,2,...,n} of n elements and a specific pair-property P of "being coprime". For more details, see the link and A242519.

Examples

			There are 6 such cycles of length n=5: C_1={1,2,3,4,5}, C_2={1,2,3,5,4},
C_3={1,2,5,3,4}, C_4={1,2,5,4,3}, C_5={1,3,2,5,4}, and C_6={1,4,3,2,5}.
For length n=6, the count drops to just 2:
C_1={1,2,3,4,5,6}, C_2={1,4,3,2,5,6}.
		

Crossrefs

Programs

  • Mathematica
    A242529[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[cpf[x], # != 1 &]];
    cpf[x_] := Module[{i},
       Table[GCD[x[[i]], x[[i + 1]]], {i, Length[x] - 1}]];
    Join[{1, 1}, Table[A242529[n], {n, 3, 10}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242529[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[GCD[First[perm], Last[perm]] == 1, ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[GCD[Last[perm], new] != 1, Continue[]];
          A242529[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{1, 1},Table[ct = 0; A242529[n, {1}, Range[2, n]]/2, {n, 3, 12}] ](* Robert Price, Oct 25 2018 *)

Formula

For n>2, a(n) = A086595(n)/2.

Extensions

a(1) corrected, a(19)-a(29) added by Max Alekseyev, Jul 04 2014

A242530 Number of cyclic arrangements of S={1,2,...,2n} such that the binary expansions of any two neighbors differ by one bit.

Original entry on oeis.org

0, 0, 1, 0, 2, 8, 0, 0, 224, 754, 0, 26256, 0, 0, 22472304, 0, 90654576, 277251016, 0, 7852128780
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

Here, a(n)=NPC(2n;S;P) is the count of all neighbor-property cycles for a specific set S of 2n elements and a pair-property P. For more details, see the link and A242519.
In this case the property P is the Gray condition. The choice of the set S is important; when it is replaced by {0,1,2,...,2n-1}, the sequence changes completely and becomes A236602.

Examples

			The two cycles for n=5 (cycle length 10) are:
C_1={1,3,7,5,4,6,2,10,8,9}, C_2={1,5,4,6,7,3,2,10,8,9}.
		

Crossrefs

Programs

  • Mathematica
    A242530[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, 2 n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    btf[x_] := Module[{i},
       Table[DigitCount[BitXor[x[[i]], x[[i + 1]]], 2, 1], {i,
         Length[x] - 1}]];
    lpf[x_] := Length[Select[btf[x], # != 1 &]];
    Table[A242530[n], {n, 1, 5}]
     (* OR, a less simple, but more efficient implementation. *)
    A242530[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[DigitCount[BitXor[First[perm], Last[perm]], 2, 1] == 1, ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[DigitCount[BitXor[Last[perm], new], 2, 1] != 1, Continue[]];
          A242530[n, Join[perm, {new}],
           Complement[Range[2, 2 n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Table[ct = 0; A242530[n, {1}, Range[2, 2 n]]/2, {n, 1, 10}] (* Robert Price, Oct 25 2018 *)

Extensions

a(16)-a(20) from Fausto A. C. Cariboni, May 10 2017, May 15 2017

A242531 Number of cyclic arrangements of S={1,2,...,n} such that the difference of any two neighbors is a divisor of their sum.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 3, 9, 26, 82, 46, 397, 283, 1675, 9938, 19503, 10247, 97978, 70478, 529383, 3171795, 7642285, 3824927, 48091810, 116017829, 448707198, 1709474581, 6445720883, 3009267707, 51831264296
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.

Examples

			The only such cycle of length n=5 is {1,2,4,5,3}.
For n=7 there are three solutions: C_1={1,2,4,5,7,6,3}, C_2={1,2,4,6,7,5,3}, C_3={1,2,6,7,5,4,3}.
		

Crossrefs

Programs

  • Mathematica
    A242531[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    dvf[x_] := Module[{i},
       Table[Divisible[x[[i]] + x[[i + 1]], x[[i]] - x[[i + 1]]], {i,
         Length[x] - 1}]];
    lpf[x_] := Length[Select[dvf[x], ! # &]];
    Join[{0, 1}, Table[A242531[n], {n, 3, 10}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242531[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[Divisible[First[perm] + Last[perm],
           First[perm] - Last[perm]], ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[! Divisible[Last[perm] + new, Last[perm] - new], Continue[]];
          A242531[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{0, 1}, Table[ct = 0; A242531[n, {1}, Range[2, n]]/2, {n, 3, 13}]] (* Robert Price, Oct 25 2018 *)

Extensions

a(24)-a(28) from Fausto A. C. Cariboni, May 25 2017
a(29) from Fausto A. C. Cariboni, Jul 09 2020
a(30) from Fausto A. C. Cariboni, Jul 14 2020

A242533 Number of cyclic arrangements of S={1,2,...,2n} such that the difference of any two neighbors is coprime to their sum.

Original entry on oeis.org

1, 1, 2, 36, 288, 3888, 200448, 4257792, 139511808, 11813990400, 532754620416
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

a(n)=NPC(2n;S;P) is the count of all neighbor-property cycles for a specific set S of 2n elements and a specific pair-property P. For more details, see the link and A242519.
Conjecture: in this case it seems that NPC(n;S;P)=0 for all odd n, so only the even ones are listed. This is definitely not the case when the property P is replaced by its negation (see A242534).

Examples

			For n=4, the only cycle is {1,2,3,4}.
The two solutions for n=6 are: C_1={1,2,3,4,5,6} and C_2={1,4,3,2,5,6}.
		

Crossrefs

Programs

  • Mathematica
    A242533[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, 2 n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[cpf[x], ! # &]];
    cpf[x_] := Module[{i},
       Table[CoprimeQ[x[[i]] - x[[i + 1]], x[[i]] + x[[i + 1]]], {i,
         Length[x] - 1}]];
    Join[{1}, Table[A242533[n], {n, 2, 5}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242533[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[CoprimeQ[First[perm] + Last[perm], First[perm] - Last[perm]],
          ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[! CoprimeQ[Last[perm] + new, Last[perm] - new], Continue[]];
          A242533[n, Join[perm, {new}],
           Complement[Range[2, 2 n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{1}, Table[ct = 0; A242533[n, {1}, Range[2, 2 n]]/2, {n, 2, 6}] ](* Robert Price, Oct 25 2018 *)

Extensions

a(10)-a(11) from Fausto A. C. Cariboni, May 31 2017, Jun 01 2017

A242534 Number of cyclic arrangements of S={1,2,...,n} such that the difference of any two neighbors is not coprime to their sum.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 72, 288, 3600, 17856, 174528, 2540160, 14768640, 101030400, 1458266112, 11316188160, 140951577600, 2659218508800, 30255151463424, 287496736542720, 5064092578713600, 76356431941939200, 987682437203558400, 19323690313219522560
Offset: 1

Views

Author

Stanislav Sykora, May 30 2014

Keywords

Comments

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.
Compare this with A242533 where the property is inverted.

Examples

			The first and the last of the 72 cycles for n=10 are:
C_1={1,3,5,10,2,4,8,6,9,7} and C_72={1,7,5,10,8,4,2,6,3,9}.
There are no solutions for cycle lengths from 2 to 9.
		

Crossrefs

Programs

  • Mathematica
    A242534[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2;
    j1f[x_] := Join[{1}, x, {1}];
    lpf[x_] := Length[Select[cpf[x], ! # &]];
    cpf[x_] := Module[{i},
       Table[! CoprimeQ[x[[i]] - x[[i + 1]], x[[i]] + x[[i + 1]]], {i,
         Length[x] - 1}]];
    Join[{1}, Table[A242534[n], {n, 2, 10}]]
    (* OR, a less simple, but more efficient implementation. *)
    A242534[n_, perm_, remain_] := Module[{opt, lr, i, new},
       If[remain == {},
         If[!
           CoprimeQ[First[perm] + Last[perm], First[perm] - Last[perm]],
          ct++];
         Return[ct],
         opt = remain; lr = Length[remain];
         For[i = 1, i <= lr, i++,
          new = First[opt]; opt = Rest[opt];
          If[CoprimeQ[Last[perm] + new, Last[perm] - new], Continue[]];
          A242534[n, Join[perm, {new}],
           Complement[Range[2, n], perm, {new}]];
          ];
         Return[ct];
         ];
       ];
    Join[{1}, Table[ct = 0; A242534[n, {1}, Range[2, n]]/2, {n, 2, 12}] ](* Robert Price, Oct 25 2018 *)

Extensions

a(19)-a(27) from Hiroaki Yamanouchi, Aug 30 2014
Previous Showing 11-15 of 15 results.