cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A266944 Expansion of Product_{k>=1} 1 / (1 - 3*x^k)^2.

Original entry on oeis.org

1, 6, 33, 150, 636, 2508, 9501, 34674, 123369, 429396, 1469733, 4959600, 16545597, 54662046, 179124837, 582893052, 1885479918, 6067245570, 19435083054, 62006825166, 197128631562, 624716063502, 1974151076946, 6222482535642, 19567579430643, 61403207075448
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-3*x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 3^n, where c = Product_{k>=1} 1/(1-1/3^k)^2 = 1/QPochhammer(1/3)^2 = 3.187340158492291107944103748176139... .

A349922 Dirichlet g.f.: Product_{k>=2} 1 / (1 - 3 * k^(-s)).

Original entry on oeis.org

1, 3, 3, 12, 3, 12, 3, 39, 12, 12, 3, 48, 3, 12, 12, 129, 3, 48, 3, 48, 12, 12, 3, 165, 12, 12, 39, 48, 3, 57, 3, 399, 12, 12, 12, 201, 3, 12, 12, 165, 3, 57, 3, 48, 48, 12, 3, 552, 12, 48, 12, 48, 3, 165, 12, 165, 12, 12, 3, 237, 3, 12, 48, 1245, 12, 57, 3, 48, 12, 57
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2021

Keywords

Crossrefs

A370752 a(n) = 3^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/3).

Original entry on oeis.org

1, 6, 36, 360, 1998, 18792, 121176, 1123632, 7537860, 72078174, 510702408, 4896308088, 35923749480, 345406994280, 2600934294816, 24985346997888, 191735328374478, 1838307293836560, 14317601666954364, 136953233511162840, 1079293961918593800, 10299943344889922832
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Comments

In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} ((1 + d*x^k)/(1 - d*x^k))^(1/m), then a(n) ~ QPochhammer(-1, 1/d)^(1/m) * d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).

Crossrefs

Cf. A303390 (d=3,m=1), A370751 (d=3,m=2), A370752 (d=3,m=3).
Cf. A261584 (d=2,m=1), A303346 (d=2,m=2), A370750 (d=2,m=3), A370749 (d=2,m=4).
Cf. A015128 (d=1,m=1), A303307 (d=1,m=2), A303342 (d=1,m=3).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k)/(1 - 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 3*(3*x)^k)/(1 - 3*(3*x)^k))^(1/3).
a(n) ~ QPochhammer(-1, 1/3)^(1/3) * 9^n / (Gamma(1/3) * QPochhammer(1/3)^(1/3) * n^(2/3)).

A300583 Expansion of Product_{k>=1} 1 / (1 - 2*3^k*x^k).

Original entry on oeis.org

1, 6, 54, 378, 2754, 17982, 121014, 765450, 4894506, 30429918, 189311094, 1160312850, 7113869226, 43228473822, 262556300286, 1587419581410, 9590551158474, 57795130268694, 348125978482686, 2093918636332530, 12590534397102930, 75647788993941174
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 09 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-2*3^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 6^n, where c = A065446 = 1/QPochhammer(1/2) = 3.46274661945506361153...

A352786 Expansion of Product_{k>=1} (1 - 3^(k-1)*x^k).

Original entry on oeis.org

1, -1, -3, -6, -18, -27, -108, -81, -486, 0, -1458, 8748, -6561, 118098, 118098, 1003833, 1417176, 11691702, 9565938, 105225318, 114791256, 746143164, 1076168025, 7231849128, 2324522934, 58113073350, 45328197213, 334731302496, 146444944842, 3263630199336, -3012581722464
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 3^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 30}]

Formula

a(n) = Sum_{k=0..A003056(n)} (-1)^k * q(n,k) * 3^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.

A370734 a(n) = 8^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/4).

Original entry on oeis.org

1, 6, 138, 2292, 47046, 852756, 18266628, 366635112, 7948637382, 170568754692, 3761729402412, 83136335360856, 1863229219846428, 41883396293989320, 948524060727094728, 21555960625992644304, 492036151405623971142, 11264431786398948383844, 258676355450246122857756
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Crossrefs

Cf. A242587 (m=1), A370714 (m=2), A370710 (m=3), A370735 (m=5).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 8^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1/(1-3*(8*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - 3*(8*x)^k)^(1/4).
a(n) ~ 24^n / (Gamma(1/4) * QPochhammer(1/3)^(1/4) * n^(3/4)).

A370751 a(n) = 2^n * [x^n] Product_{k>=1} ((1 + 3*x^k)/(1 - 3*x^k))^(1/2).

Original entry on oeis.org

1, 6, 30, 204, 966, 5748, 29388, 169944, 886278, 5169732, 27794820, 162920616, 894445212, 5274022920, 29398573272, 174041671344, 980746798278, 5821525480164, 33071756442708, 196663513473672, 1124154722216244, 6693497121210648, 38448301937075112, 229149691659210192
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k)/(1 - 3*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 2^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 3*(2*x)^k)/(1 - 3*(2*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 3*(2*x)^k)/(1 - 3*(2*x)^k))^(1/2).
a(n) ~ c * 6^n / n^(1/2), where c = (QPochhammer(-1,1/3) / (Pi * QPochhammer(1/3)))^(1/2) = 1.333660169175690343841707335109800906849893636...

A329155 Expansion of Product_{k>=1} 1 / (1 - 2*x^k - 3*x^(2*k))^(1/2).

Original entry on oeis.org

1, 1, 4, 9, 27, 67, 193, 515, 1462, 4070, 11588, 32898, 94389, 271017, 782401, 2263002, 6565987, 19086043, 55597255, 162207806, 473992799, 1386875848, 4062919108, 11915397853, 34979609583, 102781548770, 302259362326, 889566748760, 2619915414564, 7721166976185
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[1/(1 - 2 x^k - 3 x^(2 k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Exp[Sum[Sum[(3^d + (-1)^d)/d, {d, Divisors[k]}] x^k/2, {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 - x^(2*k - 1)) / (1 - 3*x^k))^(1/2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (3^d + (-1)^d) / d ) * x^k / 2).
G.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = g.f. of A002426 (central trinomial coefficients).
a(n) ~ c * 3^(n + 1/2) / (2*sqrt(Pi*n)), where c = sqrt(Product_{k>=2} 1/((1 - 1/3^(k-1))*(1 + 1/3^k))) = sqrt(8 / (3 * QPochhammer[-1, 1/3] * QPochhammer[1/3])) = 1.23332761652608605487734981242239445... - Vaclav Kotesovec, Nov 07 2019
Previous Showing 11-18 of 18 results.