cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A242820 Number T(n,k) of permutations of [n] with exactly k occurrences of the consecutive step pattern up, down, down, down; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 24, 116, 4, 672, 48, 4536, 504, 34944, 5376, 302896, 59488, 496, 2916992, 697856, 13952, 30899616, 8720448, 296736, 357080064, 116109312, 5812224, 4470310976, 1645662912, 110697408, 349504, 60269056512, 24776769024, 2114735616, 17730048
Offset: 0

Views

Author

Alois P. Heinz, May 23 2014

Keywords

Examples

			T(5,1) = 4: (1,5,4,3,2), (2,5,4,3,1), (3,5,4,2,1), (4,5,3,2,1).
Triangle T(n,k) begins:
:  0 :        1;
:  1 :        1;
:  2 :        2;
:  3 :        6;
:  4 :       24;
:  5 :      116,       4;
:  6 :      672,      48;
:  7 :     4536,     504;
:  8 :    34944,    5376;
:  9 :   302896,   59488,    496;
: 10 :  2916992,  697856,  13952;
: 11 : 30899616, 8720448, 296736;
		

Crossrefs

Column k=0 gives A177518.
Row sums give: A000142.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, [1, 3, 4, 1][t])*`if`(t=4, x, 1), j=1..u)+
          add(b(u+j-1, o-j, 2), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Expand[
         Sum[b[u - j, o + j - 1, {1, 3, 4, 1}[[t]]]*If[t==4, x, 1], {j, 1, u}]+
         Sum[b[u + j - 1, o - j, 2], {j, 1, o}]]];
    T[n_] := CoefficientList[b[n, 0, 1], x];
    T /@ Range[0, 15] // Flatten (* Jean-François Alcover, Mar 23 2021, after Alois P. Heinz *)

A220183 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k triple descents (n>=0,0<=k<=n-3). We say that i is a triple descent of a permutation p if p(i) > p(i+1) > p(i+2) > p(i+3).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 111, 8, 1, 642, 67, 10, 1, 4326, 602, 99, 12, 1, 33333, 5742, 1093, 137, 14, 1, 288901, 59504, 12425, 1852, 181, 16, 1, 2782082, 666834, 151635, 24970, 3029, 231, 18, 1, 29471046, 8054684, 1981499, 355906, 48455, 4902, 287, 20, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 12 2012

Keywords

Comments

Row sums = n!.
T(n,0) = A117158.

Examples

			:     1;
:     1;
:     2;
:     6;
:    23,    1;
:   111,    8,    1;
:   642,   67,   10,   1;
:  4326,  602,   99,  12,  1;
: 33333, 5742, 1093, 137, 14, 1;
T(5,1) = 8 because we have: (4,5,3,2,1), (3,5,4,2,1), (2,5,4,3,1), (5,4,3,1,2), (1,5,4,3,2), (5,4,2,1,3), (5,3,2,1,4), (4,3,2,1,5).
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, 1), j=1..u)+
          add(b(u+j-1, o-j, [2, 3, 3][t])*`if`(t=3, x, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 29 2013
  • Mathematica
    nn=10; u=y-1; a=Apply[Plus, Table[Normal[Series[y x^4/(1-y x - y x^2-y x^3), {x,0,nn}]][[n]]/(n+3)!, {n,1,nn-3}]]/.y->u; Range[0,nn]! CoefficientList[Series[1/(1-x-a), {x,0,nn}], {x,y}]//Grid

Formula

E.g.f.: 1/(1 - x - Sum_{k,n} I(n,k)(y - 1)^k*x^n/n!) where I(n,k) is the coefficient of y^k*x^n in the ordinary generating function expansion of y x^4/(1 - y*x - y*x^2 - y*x^3) See Flajolet and Sedgewick reference in Links section.

A243105 Number of permutations of [n] with exactly ten (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 298702188259102685572182, 0, 0, 0, 0, 1343764184037862976125525799963820, 0, 0, 0, 0, 0, 899099147941632652542743156466630723477224554496, 0, 0, 89963063825649646755150759614762027655562252125282
Offset: 15

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=10 of A242783.

A246221 Number of permutations of [n] with exactly one occurrence of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

1, 3, 50, 270, 602, 5376, 139714, 1366016, 15302031, 161855232, 2600075865, 24776769024, 83295229293, 1553561635125, 93399961380678, 2499411984278178, 42789384888638364, 1138928547765375000, 15344070225505482050, 450745170646586005994, 6999343174293499456470
Offset: 3

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=1 of A242783.

A246222 Number of permutations of [n] with exactly two (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

99, 0, 13303, 530432, 2715243, 14872704, 712988175, 2114735616, 14553496947, 22338508875, 9307563626682, 839345640802598, 8486108520773778, 298020352385025000, 10432593658200450596, 210875469472380711300, 944599826416703171100, 12667164470975664000000
Offset: 7

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=2 of A242783.

A246223 Number of permutations of [n] with exactly three (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

12, 0, 0, 158720, 74601, 0, 59062275, 17730048, 2099186631, 10006375, 206421198786, 135518026916798, 569885619485772, 13007265031125000, 5556193492800826418, 52483739349674666340, 51836903694327604380, 388109358965377200000, 302747316148839193725590
Offset: 7

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=3 of A242783.

A246224 Number of permutations of [n] with exactly four (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 255577419, 0, 0, 9542007262728, 6774382288791, 0, 2426035607748545873, 7229099931331250350, 1033055991550105110, 2319374753629800000, 19452094129713604966805, 438500213962184713953125, 45449834784068599467011795
Offset: 7

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=4 of A242783.

A246225 Number of permutations of [n] with exactly five (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

26546042, 0, 0, 222237912664, 0, 0, 902675188454625274, 523709583562561554, 4019286730558350, 0, 380750072712510202319, 378380322018952109375, 6458041428528147414728302, 18033623516991092062500, 51609923138804798955087048, 809786012867038620000000
Offset: 15

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=5 of A242783.

A246226 Number of permutations of [n] with exactly six (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

2340699, 0, 0, 0, 0, 0, 264152543774143518, 12327936260780536, 0, 0, 0, 0, 672873380447205487461117, 0, 340824919595050237301116, 0, 5490319613423481676641190699, 0, 10557477888680231517368491, 44567941059064479980820469827072, 21711236330372841724318248158224
Offset: 15

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=6 of A242783.

A246227 Number of permutations of [n] with exactly seven (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=up and 0=down.

Original entry on oeis.org

171470, 0, 0, 0, 0, 0, 64556303422787162, 0, 0, 0, 0, 0, 53330837507335912360442, 0, 0, 0, 510289061406183066554328264, 0, 0, 253410955069956058210029266688, 0, 3671524606283906345376361339863458448, 41993835528908638694682902028400861
Offset: 15

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=7 of A242783.
Previous Showing 11-20 of 23 results. Next