cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A289699 Numbers k such that k!6 - 32 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 15, 19, 33, 35, 39, 59, 63, 75, 105, 143, 187, 213, 271, 307, 431, 549, 1211, 1597, 1879, 2025, 3085, 5995, 5997, 6697, 6795, 10543, 21515, 25811, 34345, 57561, 70797, 71671
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 23, 59, 373, 1697, 7577923, 21827543, 295540213, ...
a(35) > 10^5.
Terms > 39 correspond to probable primes.

Examples

			15!6 - 32 = 15*9*3 - 32 = 373 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 32] &]

Extensions

a(32)-a(34) from Robert Price, Aug 04 2018

A289700 Numbers k such that k!6 - 36 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 19, 25, 55, 61, 113, 131, 133, 439, 529, 1079, 1621, 2609, 2825, 3997, 4235, 5081, 7319, 8365, 9023, 10273, 18095, 18199, 22625, 24535, 27229, 28883, 99877
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 19, 1693, 43189, 5745471106339, 350473737488839, ...
a(29) > 10^5.
Terms > 25 correspond to probable primes.

Examples

			19!6 - 36 = 19*13*7*1 - 36 = 1693 is prime, so 19 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[10, 50000], PrimeQ[MultiFactorial[#, 6] - 36] &]

Extensions

a(28) from Robert Price, Nov 28 2018

A289701 Numbers k such that k!6 - 48 is prime, where k!6 is the sextuple factorial number (A085158).

Original entry on oeis.org

11, 13, 17, 25, 35, 41, 73, 77, 89, 113, 115, 121, 125, 137, 155, 169, 287, 521, 709, 721, 1999, 2333, 3029, 4067, 6343, 6773, 11065, 14095, 29969, 36181, 50155, 60973, 84731, 88769
Offset: 1

Views

Author

Robert Price, Jul 09 2017

Keywords

Comments

Corresponding primes are: 7, 43, 887, 43177, 21827527, 894930527, 1714167050058087577, ...
a(35) > 10^5.
Terms > 41 correspond to probable primes.

Examples

			13!6 - 48 = 13*7*1 - 48 = 43 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[11, 50000], PrimeQ[MultiFactorial[#, 6] - 48] &]

Extensions

a(31)-a(34) from Robert Price, Aug 04 2018

A291122 Numbers k such that k!4 + 2^2 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

0, 1, 3, 15, 17, 19, 23, 25, 27, 29, 35, 49, 63, 79, 87, 105, 139, 319, 339, 409, 441, 477, 1023, 1107, 1517, 1557, 1625, 4215, 5297, 6291, 6499, 7357, 11639, 12963, 13989, 15825, 19993, 20535, 35391, 58483, 69247
Offset: 1

Views

Author

Robert Price, Aug 17 2017

Keywords

Comments

Corresponding primes are: 5, 5, 7, 3469, 9949, 65839, 1514209, 5221129, 40883539, ...
a(42) > 10^5.
Terms > 35 correspond to probable primes.

Examples

			15!4 + 2^2 = 15*11*7*3*1 + 4 = 3469 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^2] &]
    Select[Range[0,4300],PrimeQ[Times@@Range[#,1,-4]+4]&] (* The program generates the first 28 terms of the sequence. *) (* Harvey P. Dale, Sep 16 2024 *)

Extensions

a(40)-a(41) from Robert Price, Sep 25 2019

A291343 Numbers k such that k!4 + 2^3 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 19, 23, 25, 33, 39, 41, 63, 67, 71, 85, 87, 91, 133, 171, 243, 291, 1239, 1543, 1879, 2169, 2421, 3149, 3323, 3377, 3501, 3529, 5433, 5599, 7299, 11227, 11275, 13939, 27147, 32435, 86455, 92105
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 11, 13, 29, 53, 239, 593, 65843, 1514213, 5221133, ...
a(43) > 10^5.
Terms > 33 correspond to probable primes.

Examples

			13!4 + 2^3 = 13*9*5*1 + 8 = 593 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^3] &]
    Select[Range[100000],PrimeQ[Times@@Range[#,1,-4]+8]&] (* Harvey P. Dale, Oct 29 2022 *)

Extensions

a(41)-a(42) from Robert Price, Sep 25 2019

A291344 Numbers k such that k!4 + 2^4 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

0, 1, 3, 7, 9, 13, 19, 27, 35, 37, 65, 67, 75, 83, 89, 101, 111, 229, 363, 633, 1605, 1663, 1769, 1863, 1947, 2695, 3003, 5309, 7835, 9495, 9945, 11041, 18833, 21119, 21465, 21889, 24509, 26757, 27595, 33657, 54007, 67699, 87915
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 17, 17, 19, 37, 61, 601, 65851, 40883551, ...
a(44) > 10^5.
Terms > 37 correspond to probable primes.

Examples

			13!4 + 2^4 = 13*9*5*1 + 16 = 601 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^4] &]

Extensions

a(41)-a(43) from Robert Price, Sep 25 2019

A291345 Numbers k such that k!4 + 2^5 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

5, 7, 11, 13, 19, 21, 25, 27, 35, 37, 51, 55, 65, 71, 105, 107, 129, 223, 229, 273, 307, 337, 345, 479, 509, 517, 519, 921, 963, 993, 1309, 1697, 1855, 1871, 2451, 2573, 2755, 3059, 3271, 4005, 4823, 17079, 20209, 20559, 37845, 38343, 68383, 79617, 81539
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 37, 53, 263, 617, 65867, 208877, 5221157, 40883567, ...
a(50) > 10^5.
Terms > 37 correspond to probable primes.

Examples

			13!4 + 2^5 = 13*9*5*1 + 32 = 617 is prime, so 13 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^5] &]
    Select[Range[82000],PrimeQ[Times@@Range[#,1,-4]+32]&] (* Harvey P. Dale, Apr 11 2022 *)

Extensions

a(47)-a(49) from Robert Price, Sep 25 2019

A291347 Numbers k such that k!4 + 2^6 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

3, 9, 15, 17, 19, 29, 31, 45, 55, 63, 73, 101, 135, 173, 217, 271, 439, 535, 729, 787, 933, 1473, 1651, 6617, 7805, 12461, 13253, 18627, 20243, 55271
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 67, 109, 3529, 10009, 65899, 151412689, 1267389649, ...
a(31) > 10^5.
Terms > 31 correspond to probable primes.

Examples

			15!4 + 2^6 = 15*11*7*3*1 + 64 = 3529 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^6] &]

Extensions

a(30) from Robert Price, Sep 25 2019

A291348 Numbers k such that k!4 + 2^7 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

3, 7, 9, 11, 15, 19, 29, 37, 91, 123, 151, 197, 415, 763, 1817, 2981, 3977, 4199, 11667, 12865, 16873, 19449, 27213, 31581, 64877, 65401
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 131, 149, 173, 359, 3593, 65963, 151412753, ...
a(27) > 10^5.
Terms > 37 correspond to probable primes.

Examples

			15!4 + 2^7 = 15*11*7*3*1 + 128 = 3593 is prime, so 15 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^7] &]
    Select[Range[3000],PrimeQ[Times@@Range[#,1,-4]+128]&] (* Harvey P. Dale, Feb 26 2023 *)

Extensions

a(25)-a(26) from Robert Price, Sep 25 2019

A291349 Numbers k such that k!4 + 2^8 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).

Original entry on oeis.org

1, 7, 11, 31, 57, 73, 97, 105, 209, 245, 403, 545, 917, 953, 1177, 1239, 1283, 1627, 2465, 3701, 4479, 4637, 6349, 7983, 11155, 13595, 15547, 17031, 17609, 24087, 24707, 39773, 40407, 63329
Offset: 1

Views

Author

Robert Price, Aug 22 2017

Keywords

Comments

Corresponding primes are: 257, 277, 487, 1267389841, ...
a(35) > 10^5.
Terms > 31 correspond to probable primes.

Examples

			11!4 + 2^8 = 11*7*3*1 + 256 = 487 is prime, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^8] &]

Extensions

a(34) from Robert Price, Sep 25 2019
Previous Showing 31-40 of 43 results. Next