cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A091304 a(n) = Omega(2n-1) (number of prime factors of the n-th odd number, counted with multiplicity).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 2, 2, 3, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 1, 2, 2, 2, 4, 1, 1, 3, 1, 1, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Andrew S. Plewe, Feb 20 2004

Keywords

Comments

Omega(n) of the odd integers follows a pattern similar to A001222, with 4 maxima instead of 2 - i.e. between 2^n and (2^(n+1) - 1) there are two numbers with exactly n factors (2^n and 2^(n-1) * 3) while the odd integers have 4 maxima (3^n, 3^(n-1) * 5, 3^(n-1) * 7, 5^2*3^(n-2)) between 3^n and 3^(n+1) - 1.

Examples

			Omega(1) = 0, Omega(9) = 2 (3 * 3 = 9), Omega (243) = 5 (3 * 3 * 3 * 3 * 3 = 243), Omega(51) = 2 (3 * 17 = 51).
For n = 92, A001222(2*92 - 1) = A001222(183) = 2 as 183 = 3*61, thus a(92) = 2. - _Antti Karttunen_, May 31 2017
		

Crossrefs

One more than A285716 (after the initial term).
Cf. A006254 (positions of ones).

Programs

  • Mathematica
    a[n_] := PrimeOmega[2*n - 1]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • PARI
    a(n) = bigomega(2*n-1) \\ Michel Marcus, Jul 26 2013, edited to reflect the changed starting offset by Antti Karttunen, May 31 2017

Formula

a(n) = Omega(2n-1). [Odd bisection of A001222.]
From Antti Karttunen, May 31 2017: (Start)
For n >= 1, a(n) = A000120(A244153(n)).
For n >= 2, a(n) = 1+A285716(n).
(End)

Extensions

Starting offset changed to 1 and the definition modified respectively. Also values of the initial term and of term a(92) (= 2, previously a(91) = 1) corrected by Antti Karttunen, May 31 2017

A285716 a(n) = A080791(A245611(n)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0, 3, 0, 1, 1, 0, 1, 1, 1, 0, 2, 0, 0, 2, 0, 0, 1, 0, 1, 2, 1, 1, 1, 2, 0, 1, 0, 1, 3, 0, 0, 1, 1, 1, 2, 0, 0, 2, 1, 0, 1, 1, 0, 2, 0, 1, 2, 0, 2, 1, 0, 0, 1, 1, 1, 3, 0, 0, 2, 0, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 3, 0, 0, 2, 0, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 25 2017

Keywords

Crossrefs

One less than A091304 after the initial term.
Cf. A006254 (gives the positions of zeros after initial a(1)=0.)

Programs

  • Mathematica
    a[n_] := PrimeOmega[2*n - 1] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • Scheme
    ;; First implementation uses memoization-macro definec:
    (definec (A285716 n) (if (<= n 2) 0 (+ (if (= 2 (modulo n 3)) 1 0) (A285716 (A285712 n)))))
    (define (A285716 n) (A080791 (A245611 n)))

Formula

a(1) = 0, a(2) = 1, for n > 2, a(n) = a(A285712(n)) + [n == 2 mod 3]. (Where [] is Iverson bracket, giving here 1 only if n is of the form 3k+2, and 0 otherwise.)
a(n) = A080791(A245611(n)).
For all n >= 2, a(n) = A091304(n)-1 = A000120(A244153(n))-1. - Antti Karttunen, May 31 2017

A292590 a(1) = 0; and for n > 1, a(n) = 2*a(A285712(n)) + [0 == (n mod 3)].

Original entry on oeis.org

0, 0, 1, 2, 0, 5, 10, 2, 21, 42, 4, 85, 0, 0, 171, 342, 10, 5, 684, 20, 1369, 2738, 4, 5477, 0, 42, 10955, 8, 84, 21911, 43822, 8, 21, 87644, 170, 175289, 350578, 0, 11, 701156, 0, 1402313, 40, 342, 2804627, 16, 684, 85, 5609254, 20, 11218509, 22437018, 10, 44874037, 89748074, 1368, 179496149, 168, 40, 43, 0, 2738, 1, 358992298, 5476, 717984597, 80, 8
Offset: 1

Views

Author

Antti Karttunen, Sep 20 2017

Keywords

Comments

Binary expansion of a(n) encodes the positions of multiples of three in the path taken from n to the root in the binary trees like A245612 and A244154.

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 0, Mod[n, 3] == 2, Ceiling[n/3], True, (Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1] + 1)/2]; a[n_] := a[n] = If[n == 1, n - 1, 2 a[f@ n] + Boole[Divisible[n, 3]]]; Array[a, 67] (* Michael De Vlieger, Sep 22 2017 *)
  • Scheme
    (define (A292590 n) (if (<= n 1) 0 (+ (if (zero? (modulo n 3)) 1 0) (* 2 (A292590 (A285712 n))))))

Formula

a(1) = 0; and for n > 1, a(n) = A079978(n) + 2*a(A285712(n)).
a(n) + A292591(n) = A245611(n).
a(A245612(n)) = A292592(n).
A000120(a(n)) = A292594(n).

A292591 a(1) = 0, a(2) = 1; and for n > 2, a(n) = 2*a(A285712(n)) + [1 == (n mod 3)].

Original entry on oeis.org

0, 1, 2, 5, 2, 10, 21, 4, 42, 85, 10, 170, 5, 4, 340, 681, 20, 8, 1363, 42, 2726, 5453, 8, 10906, 11, 84, 21812, 21, 170, 43624, 87249, 20, 40, 174499, 340, 348998, 697997, 10, 16, 1395995, 8, 2791990, 85, 680, 5583980, 43, 1362, 168, 11167961, 40, 22335922, 44671845, 16, 89343690, 178687381, 2726, 357374762, 341, 84, 80, 23, 5452, 8, 714749525, 10906
Offset: 1

Views

Author

Antti Karttunen, Sep 20 2017

Keywords

Comments

Binary expansion of a(n) encodes the positions of numbers of the form 3k+1 (with k >= 1) in the path taken from n to the root in the binary trees A245612 and A244154, except that the most significant 1-bit of a(n) always corresponds to 2 instead of 1 at the root of those trees.

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 0, Mod[n, 3] == 2, Ceiling[n/3], True, (Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1] + 1)/2]; a[n_] := a[n] = If[n <= 2, n - 1, 2 a[f@ n] + Boole[Mod[n, 3] == 1]]; Array[a, 65] (* Michael De Vlieger, Sep 22 2017 *)
  • Scheme
    (define (A292591 n) (if (<= n 2) (- n 1) (+ (if (= 1 (modulo n 3)) 1 0) (* 2 (A292591 (A285712 n))))))

Formula

a(n) + A292590(n) = A245611(n).
a(A245612(n)) = A292593(n).
A000120(a(n)) = A292595(n).

A246679 Permutation of natural numbers, even bisection of A246675 halved: a(n) = A246675(2*n)/2.

Original entry on oeis.org

1, 2, 4, 3, 8, 16, 5, 32, 64, 9, 128, 6, 7, 256, 512, 13, 10, 1024, 21, 2048, 4096, 11, 8192, 12, 25, 16384, 18, 33, 32768, 65536, 19, 26, 131072, 37, 262144, 524288, 17, 20, 1048576, 15, 2097152, 42, 45, 4194304, 36, 57, 50, 8388608, 27, 16777216, 33554432, 29, 67108864, 134217728, 61, 268435456, 66, 43, 52, 24, 73, 14
Offset: 1

Views

Author

Antti Karttunen, Sep 02 2014

Keywords

Comments

Equally: even bisection of A246677 halved.

Crossrefs

Inverse: A246680.
a(n) differs from A244153(n+1) for the first time at n=16, where a(16) = 13, while A244153(17) = 17.

Programs

Formula

a(n) = A246675(2*n)/2.
a(n) = A246677(2*n)/2.
Previous Showing 11-15 of 15 results.