cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A244403 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 7.

Original entry on oeis.org

1, 2, 6, 17, 50, 143, 416, 1198, 3467, 10019, 29001, 83945, 243228, 705012, 2044935, 5934425, 17231410, 50058023, 145491836, 423056364, 1230683672, 3581556220, 10427172296, 30368394833, 88476965536, 257860132679, 751756288476, 2192311994070, 6395199688864
Offset: 8

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Column k=7 of A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 7$2) -`if`(k=0, 0, b(n-1$2, 6$2)):
    seq(a(n), n=8..40);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 7, 7] - If[n == 0, 0, b[n - 1, n - 1, 6, 6]]; Table[a[n], {n, 8, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) = A182378(n) - A036722(n).

A244404 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 8.

Original entry on oeis.org

1, 2, 6, 17, 50, 143, 416, 1199, 3473, 10042, 29089, 84259, 244316, 708679, 2057087, 5974077, 17359390, 50467157, 146789962, 427148444, 1243513350, 3621591235, 10551595959, 30753712080, 89666493709, 261522175986, 763002239120, 2226771020793, 6500575182332
Offset: 9

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Column k=8 of A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 8$2) -`if`(k=0, 0, b(n-1$2, 7$2)):
    seq(a(n), n=9..40);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 8, 8] - If[n == 0, 0, b[n - 1, n - 1, 7, 7]]; Table[a[n], {n, 9, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

A244405 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 9.

Original entry on oeis.org

1, 2, 6, 17, 50, 143, 416, 1199, 3474, 10048, 29112, 84347, 244630, 709767, 2060754, 5986231, 17399060, 50595235, 147199567, 428448576, 1247613511, 3634451971, 10591746511, 30878554201, 90053295475, 262716880036, 766682072349, 2238077375703, 6535237181868
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Column k=9 of A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 9$2) -`if`(k=0, 0, b(n-1$2, 8$2)):
    seq(a(n), n=10..45);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 9, 9] - If[n == 0, 0, b[n - 1, n - 1, 8, 8]]; Table[a[n], {n, 10, 45}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

A244406 Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 10.

Original entry on oeis.org

1, 2, 6, 17, 50, 143, 416, 1199, 3474, 10049, 29118, 84370, 244718, 710081, 2061842, 5989898, 17411214, 50634907, 147327663, 428858279, 1248914115, 3638554143, 10604615353, 30918735919, 90178253585, 263104102071, 767878267996, 2241762411780, 6546561427512
Offset: 11

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 27 2014

Keywords

Crossrefs

Column k=10 of A244372.

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> b(n-1$2, 10$2) -`if`(k=0, 0, b(n-1$2, 9$2)):
    seq(a(n), n=11..40);
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 10, 10] - If[n == 0, 0, b[n - 1, n - 1, 9, 9]]; Table[a[n], {n, 11, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
Previous Showing 21-24 of 24 results.