cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A356693 Decimal expansion of the constant B(2) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 2, 4, 8, 3, 3, 4, 0, 5, 3, 7, 8, 9, 1, 4, 4, 1, 7, 5, 7, 2, 3, 8, 5, 6, 4, 4, 5, 2, 0, 8, 8, 1, 7, 7, 2, 6, 2, 0, 1, 4, 7, 6, 4, 7, 2, 5, 9, 8, 0, 2, 0, 3, 0, 7, 3, 3, 8, 1, 5, 4, 5, 2, 6, 0, 6, 7, 4, 9, 8, 3, 3, 2, 5, 1, 8, 3, 1, 4, 9, 0, 4, 6, 9, 7, 9, 2, 4, 0, 4, 8, 3, 7, 2, 0, 2, 3, 1, 7, 1, 9, 8, 2, 2, 2, 8, 7, 6, 5, 6, 9, 1, 7, 4, 5, 9
Offset: 0

Views

Author

Artur Jasinski, Aug 23 2022

Keywords

Examples

			0.000248334053789144...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0}, RealDigits[N[-4*Catalan + Catalan^2/2 - Pi^2/2 + (Catalan*Pi^2)/8 + Pi^4/128 + (1/64)*Zeta[4, 1/4] + (2*Zeta'[1/2]^2)/Zeta[1/2]^2 - (Catalan Zeta'[1/2]^2)/(2 Zeta[1/2]^2) - (Pi^2 Zeta'[1/2]^2)/(16*Zeta[1/2]^2) - Zeta'[1/2]^4/(8*Zeta[1/2]^4) - (2 Zeta''[1/2])/Zeta[1/2] + (Catalan Zeta''[1/2])/(2 Zeta[1/2]) + (Pi^2 Zeta''[1/2])/(16*Zeta[1/2]) + Zeta'[1/2]^2*Zeta''[1/2]/(4 Zeta[1/2]^3) - Zeta'[1/2] Zeta'''[1/2]/(6 Zeta[1/2]^2) + Zeta''''[1/2]/(24  Zeta[1/2]), 115]][[1]]]

Formula

Equals (A332645^2 - A335815)/2.

A360807 Decimal expansion of Sum_{m>=1} 1/(1/4 + z(m)^2) where z(m) is the imaginary part of the m-th nontrivial zero of the Dirichlet beta function whose real part is 1/2.

Original entry on oeis.org

0, 7, 7, 7, 8, 3, 9, 8, 9, 9, 6, 1, 7, 9, 2, 9, 6, 4, 4, 3, 1, 0, 7, 9, 0, 2, 6, 9, 1, 9, 5, 0, 8, 5, 1, 5, 1, 6, 4, 3, 0, 6, 8, 4, 2, 8, 8, 7, 5, 6, 4, 2, 8, 8, 5, 4, 9, 0, 3, 3, 2, 3, 4, 4, 6, 7, 1, 1, 4, 1, 0, 3, 3, 0, 7, 1, 8, 6, 3, 3, 6, 8, 8, 0, 8, 2, 6
Offset: 0

Views

Author

Artur Jasinski, Feb 21 2023

Keywords

Comments

Conjecture: Nontrivial zeros whose real part is not 1/2 do not exist.

Examples

			0.077783989961792964431079...
		

Crossrefs

Programs

  • Mathematica
    kk = RealDigits[N[4 Log[Gamma[3/4]] + EulerGamma/2 + Log[2] - 3 Log[Pi]/2, 115]][[1]]; Prepend[kk, 0]
  • PARI
    4*log(gamma(3/4)) + Euler/2 + log(2) - 3*log(Pi)/2 \\ Michel Marcus, Mar 15 2023

Formula

Equals 4*log(Gamma(3/4)) + A001620/2 + log(2) - 3*log(Pi)/2.
Equals A074760 - 1 + log(4) - log(Pi) + 4*log(Gamma(3/4)).
Equals 1 - A074760 + A001620 - 2*log(Pi) + 4*log(Gamma(3/4)).
Equals 3*A074760 - 3 - A001620 + 4*log(2) + 4*log(Gamma(3/4)).
Previous Showing 11-12 of 12 results.