cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A304274 The concatenation of the first n elements is the largest positive even number with n digits when written in base 3/2.

Original entry on oeis.org

2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

This sequence is possible due to the fact that the largest even integers are prefixes of each other.
A304272(n) is the largest even integer with n digits.

Examples

			Number 8 in base 3/2 is 212, and it is the largest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the largest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 2,
          (t-> t+irem(t, 2))(b(n-1)*3/2))
        end:
    a:= n-> b(n+1)-3/2*b(n)+1:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    b[n_] := b[n] = If[n == 1, 2, Function[t, t + Mod[t, 2]][3/2 b[n-1]]];
    a[n_] := b[n+1] - 3/2 b[n] + 1;
    Array[a, 120] (* Jean-François Alcover, Dec 13 2018, after Alois P. Heinz *)

Formula

a(n) = A304273(n+1) + 1.
From Alois P. Heinz, Jun 21 2018: (Start)
a(n) = A305498(n+1) -3/2*A305498(n) + 1.
Sum_{i=0..n-1} (3/2)^i*a(n-i) = A305497(n). (End)

Extensions

More terms from Alois P. Heinz, Jun 21 2018

A305497 The largest positive even integer that can be represented with n digits in base 3/2.

Original entry on oeis.org

2, 4, 8, 14, 22, 34, 52, 80, 122, 184, 278, 418, 628, 944, 1418, 2128, 3194, 4792, 7190, 10786, 16180, 24272, 36410, 54616, 81926, 122890, 184336, 276506, 414760, 622142, 933214, 1399822, 2099734, 3149602, 4724404, 7086608, 10629914, 15944872, 23917310
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = If[n == 1, 2, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n + 1] - 3/2 b[n] + 1; A305497[n_] := Sum[(3/2)^i*a[n - i], {i, 0, n - 1}]; Table[A305497[n], {n, 1, 39}] (* Robert P. P. McKone, Feb 12 2021 *)
  • Python
    from itertools import islice
    def A305497_gen(): # generator of terms
        a = 2
        while True:
            a += a>>1
            yield (a<<1)-4
    A305497_list = list(islice(A305497_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n+1) = 2*floor(3*a(n)/4) + 2.
a(n) = 2*A061419(n+1) - 2.
a(n) = A305498(n+1) - 2.
a(n) = Sum_{i=0..n-1} (3/2)^i*A304274(n-i). - Alois P. Heinz, Jun 21 2018

A305498 The smallest positive even integer that can be represented with n digits in base 3/2.

Original entry on oeis.org

2, 4, 6, 10, 16, 24, 36, 54, 82, 124, 186, 280, 420, 630, 946, 1420, 2130, 3196, 4794, 7192, 10788, 16182, 24274, 36412, 54618, 81928, 122892, 184338, 276508, 414762, 622144, 933216, 1399824, 2099736, 3149604, 4724406, 7086610, 10629916, 15944874, 23917312
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 02 2018

Keywords

Crossrefs

Programs

  • Python
    from itertools import islice
    def A305498_gen(): # generator of terms
        a = 2
        while True:
            yield (a<<1)-2
            a += a>>1
    A305498_list = list(islice(A305498_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n+1) = 2*ceiling(3*a(n)/4).
a(n) = 2*A061419(n).
a(n) = A305497(n-1) + 2.

A305658 Powers of 3 in base 3/2.

Original entry on oeis.org

1, 20, 2100, 212000, 210110000, 21202200000, 21200101000000, 21011002020000000, 2120220212100000000, 2120012010112000000000, 2101102110221110000000000, 212211101110122200000000000, 212001222211110201000000000000, 210112102201222221020000000000000
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 07 2018

Keywords

Comments

a(n) has n zeros at the end.
a(n) is A305659(n) with n zeros added at the end, where A305659(n) is powers of 2 in base 3/2.

Crossrefs

Programs

  • Maple
    b:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+b(2*q)*10) end:
    a:= n-> b(3^n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 18 2018
  • PARI
    f(n) = if( n<1, 0, f(n\3 * 2) * 10 + n%3);
    a(n) = f(3^n); \\ Michel Marcus, Jun 18 2018

Formula

a(n) = A024629(A000244(n)).

A305659 Powers of 2 in base 3/2.

Original entry on oeis.org

1, 2, 21, 212, 21011, 212022, 21200101, 2101100202, 21202202121, 2120012010112, 210110211022111, 2122111011101222, 212001222211110201, 21011210220122222102, 2101100011201022201221, 21202200211121122010012, 2120010121200020001020211, 210110211001100210002212122
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 07 2018

Keywords

Comments

a(n) is A305658(n) with n zeros removed at the end, where A305658(n) is powers of 3 in base 3/2.

Crossrefs

Programs

  • Maple
    b:= proc(n) `if`(n<1, 0, irem(n, 3, 'q')+b(2*q)*10) end:
    a:= n-> b(2^n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 18 2018
  • PARI
    f(n) = if( n<1, 0, f(n\3 * 2) * 10 + n%3);
    a(n) = f(2^n); \\ Michel Marcus, Jun 18 2018

Formula

a(n) = A024629(A000079(n)). - Michel Marcus, Jun 18 2018

Extensions

More terms from Michel Marcus, Jun 18 2018
Previous Showing 11-15 of 15 results.